15 research outputs found

    Nitrogen cycle patterns during forest regrowth in an African Miombo woodland landscape

    Get PDF
    Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Biogeosciences, 124(6), (2019): 1591-1603, doi:10.1029/2018JG004803.Tropical dry forests in eastern and southern Africa cover 2.5 × 106 km2, support wildlife habitat and livelihoods of more than 150 million people, and face threats from land use and climate change. To inform conservation, we need better understanding of ecosystem processes like nutrient cycling that regulate forest productivity and biomass accumulation. Here we report on patterns in nitrogen (N) cycling across a 100‐year forest regrowth chronosequence in the Tanzanian Miombo woodlands. Soil and vegetation indicators showed that low ecosystem N availability for trees persisted across young to mature forests. Ammonium dominated soil mineral N pools from 0‐ to 15‐cm depth. Laboratory‐measured soil N mineralization rates across 3‐ to 40‐year regrowth sites showed no significant trends and were lower than mature forest rates. Aboveground tree N pools increased at 6 to 7 kg N·ha−1·yr−1, accounting for the majority of ecosystem N accumulation. Foliar δ15N <0‰ in an N‐fixing canopy tree across all sites suggested that N fixation may contribute to ecosystem N cycle recovery. These results contrast N cycling in wetter tropical and Neotropical dry forests, where indicators of N scarcity diminish after several decades of regrowth. Our findings suggest that minimizing woody biomass removal, litter layer, and topsoil disturbance may be important to promote N cycle recovery and natural regeneration in Miombo woodlands. Higher rates of N mineralization in the wet season indicated a potential that climate change‐altered rainfall leading to extended dry periods may lower N availability through soil moisture‐dependent N mineralization pathways, particularly for mature forests.This study depended on the knowledge, insights, and cooperation of many people and institutions. We thank the Millennium Villages Project‐Mbola site for providing introductions to the landscape and village headmen in many regions. We thank the ARI‐Tumbi staff (now TARI‐Tumbi) in Tabora, Tanzania for providing invaluable logistical support in identifying forest regrowth sites and help with labwork in Tabora, Tanzania. We thank other key local organizations, including Tabora Development Foundation Trust (Dick Mlimuka, Oscar Kisanji) and Tanzania Forest Service (Bw. Relingo), for logistical support and transportation. We thank many village headmen and farmers for access to forest sites within their lands for sampling. Finally, we would like to thank the MBL Stable Isotope laboratory and Dr. Marshall Otter for his expertise with producing and interpreting soil and leaf C, N and stable isotope data. This study was funded in part by NSF PIRE Grant OISE 0968211, a Dissertation Support Grant to Marc Mayes from Brown University (2015–2016), and completed with permission and cooperation from the Tanzania Commission on Science and Technology (COSTECH permits 2013‐261‐NA‐2014‐199 and 2015‐183‐ER‐2014‐199). Data and code for analyses can be accessed at a Github repository: https://github.com/mtm17/MiomboN.git.2019-11-0

    Recent cropping frequency, expansion, and abandonment in Mato Grosso, Brazil had selective land characteristics

    Get PDF
    This letter uses satellite remote sensing to examine patterns of cropland expansion, cropland abandonment, and changing cropping frequency in Mato Grosso, Brazil from 2001 to 2011. During this period, Mato Grosso emerged as a globally important center of agricultural production. In 2001, 3.3 million hectares of mechanized agriculture were cultivated in Mato Grosso, of which 500 000 hectares had two commercial crops per growing season (double cropping). By 2011, Mato Grosso had 5.8 million hectares of mechanized agriculture, of which 2.9 million hectares were double cropped. We found these agricultural changes to be selective with respect to land attributes —significant differences (p \u3c 0.001) existed between the land attributes of agriculture versus nonagriculture, single cropping versus double cropping, and expansion versus abandonment. Many of the land attributes (elevation, slope, maximum temperature, minimum temperature, initial soy transport costs, and soil) that were associated with an increased likelihood of expansion were associated with a decreased likelihood of abandonment (p \u3c 0.001). While land similar to agriculture and double cropping in 2001 was much more likely to be developed for agriculture than all other land, new cropland shifted to hotter, drier, lower locations that were more isolated from agricultural infrastructure (p \u3c 0.001). The scarcity of high quality remaining agricultural land available for agricultural expansion in Mato Grosso could be contributing to the slowdown in agricultural expansion observed there over 2006 to 2011. Land use policy analyses should control for land scarcity constraints on agricultural expansion

    Characterizing the Mineralogy of Potential Lunar Landing Sites

    Get PDF
    Many processes active on the early Moon are common to most terrestrial planets, including the record of early and late impact bombardment. The Moon's surface provides a record of the earliest era of terrestrial planet evolution, and the type and composition of minerals that comprise a planetary surface are a direct result of the initial composition and subsequent thermal and physical processing. Lunar mineralogy seen today is thus a direct record of the early evolution of the lunar crust and subsequent geologic processes. Specifically, the distribution and concentration of specific minerals is closely tied to magma ocean products, lenses of intruded or remelted plutons, basaltic volcanism and fire-fountaining, and any process (e.g. cratering) that might redistribute or transform primary and secondary lunar crustal materials. The association of several lunar minerals with key geologic processes is illustrated in Figure 1. The geologic history of potential landing sites on the Moon can be read from the character and context of local mineralogy

    The Economic Gains to Colorado of Amendment 66

    Full text link

    Effect of Streptokinase on Hemostasis

    No full text

    Mars Commercial Rover Payload Services

    No full text
    As the new decade begins, new programmatic strategies to conduct more frequent, lower cost missions are beginning to be applied to deep space robotic science missions, such as the Commercial Lunar Payload Services (CLPS) program. These new strategies include moving from cost-plus contracts towards fixed price contracts, commercial contractors increasingly sharing in development costs, finding launch opportunities through ride sharing and comanifesting payloads, and making use of smallsats and other spacecraft with off-the-shelf hardware. While these new practices are now being applied in many areas across NASA, they are not yet being widely implemented in the Mars exploration program, where large bespoke missions have become the dominant programmatic strategy. As the decadal survey for planetary science in the 2020’s begins its deliberations, it should consider how programmatic strategies that emphasize lower cost, more frequent missions to Mars can provide groundbreaking science return and enable the beginning of a new age in Martian exploratio
    corecore