119 research outputs found

    Evolutionary pathways to convergence in plumage patterns.

    Get PDF
    BACKGROUND: Avian plumage is ideal for investigating phenotypic convergence because of repeated evolution of the same within-feather patterns. In birds, there are three major types of regular patterns within feathers: scales, bars and spots. Existing models of within-feather pattern development suggest that scales have the simplest developmental mechanism, bars require more stringent regulation than scales, and spots have the strictest developmental parameters. We hypothesized that increasing stringency in the mechanism of pattern formation predicts the evolutionary trajectory of patterns, and hence scales should evolve first, followed by bars and finally spots. Here, using Bayesian phylogenetic modeling we reconstructed pattern evolution in the most spectacularly patterned avian clades - aquatic waterfowl (Anseriformes) and terrestrial gamebirds (Galliformes). RESULTS: Our analyses suggest that the ancestral state of plumage is an absence of patterns, but with some variability. Independent analyses of seven feather patches reveal that spots evolve after bars and scales. However, both scales and bars evolve frequently from an absence of patterns, contradicting our predictions. Over the whole body, many constraints are conserved from the level of patches, for example the largest number of steps from the ancestral state was required for spots to evolve. CONCLUSIONS: Overall there was remarkable similarity in the inferred evolutionary trajectories of plumage pattern evolution in Galliformes and Anseriformes, suggesting that developmental constraint is similar in these two orders, despite large ecological differences. These evolutionary transitions are largely congruent with a reaction-diffusion based model of pattern formation, but the evolution of bars from an unpatterned ancestor is more common than expected. Our study highlights the promise of testing models of development using comparative methods.A Cambridge International Scholarship, as well as grants from the Gardiner Fund and Pembroke College Cambridge to T-LG funded this research

    Testing whether macroevolution follows microevolution: Are colour differences among swans (Cygnus) attributable to variation at the MC1R locus?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>MC1R </it>(melanocortin-1 receptor) locus underlies intraspecific variation in melanin-based dark plumage coloration in several unrelated birds with plumage polymorphisms. There is far less evidence for functional variants of <it>MC1R </it>being involved in interspecific variation, in which spurious genotype-phenotype associations arising through population history are a far greater problem than in intraspecific studies. We investigated the relationship between <it>MC1R </it>variation and plumage coloration in swans (<it>Cygnus</it>), which show extreme variation in melanic plumage phenotypes among species (white to black).</p> <p>Results</p> <p>The two species with melanic plumage, <it>C. atratus </it>and <it>C. melanocoryphus </it>(black and black-necked swans respectively), both have amino acid changes at important functional sites in MC1R that are consistent with increased MC1R activity and melanism. Reconstruction of MC1R evolution over a newly generated independent molecular phylogeny of <it>Cygnus </it>and related genera shows that these putative melanizing mutations were independently derived in the two melanic lineages. However, interpretation is complicated by the fact that one of the outgroup genera, <it>Coscoroba</it>, also has a putative melanizing mutation at MC1R that has arisen independently but has nearly pure white plumage. Epistasis at other loci seems the most likely explanation for this discrepancy. Unexpectedly, the phylogeny shows that the genus <it>Cygnus </it>may not be monophyletic, with <it>C. melanocoryphus </it>placed as a sister group to true geese (<it>Anser</it>), but further data will be needed to confirm this.</p> <p>Conclusion</p> <p>Our study highlights the difficulty of extrapolating from intraspecific studies to understand the genetic basis of interspecific adaptive phenotypic evolution, even with a gene whose structure-function relationships are as well understood as MC1R as confounding variation make clear genotype/phenotype associations difficult at the macroevolutionary scale. However, the identification of substitutions in the black and black-necked swan that are known to be associated with melanic phenotypes, suggests <it>Cygnus </it>may be another example where there appears to be convergent evolution at MC1R. This study therefore provides a novel example where previously described intraspecific genotype/phenotype associations occur at the macroevolutionary level.</p

    The differential expression of MC1R regulators in dorsal and ventral quail plumages during embryogenesis:Implications for plumage pattern formation

    Get PDF
    Melanin pigmentation patterns are ubiquitous in animals and function in crypsis, physical protection, thermoregulation and signalling. In vertebrates, pigmentation patterns formed over large body regions as well as within appendages (hair/feathers) may be due to the differential distribution of pigment producing cells (melanocytes) and/or regulation of the melanin synthesis pathway. We took advantage of the pigmentation patterns of Japanese quail embryos (pale ventrum and patterned feathers dorsally) to explore the role of genes and their transcripts in regulating the function of the melanocortin-1-receptor (MC1R) via 1. activation: pro-opiomelanocortin (POMC), endoproteases prohormone convertase 1 (PC1) and 2(PC2), and 2. inhibition-agouti signaling and agouti-related protein (ASIP and AGRP, respectively). Melanocytes are present in all feather follicles at both 8 and 12 days post-fertilisation (E8/E12), so differential deposition of melanocytes is not responsible for pigmentation patterns in embryonic quail. POMC transcripts expressed were a subset of those found in chicken and POMC expression within feather follicles was strong. PC1 was not expressed in feather follicles. PC2 was strongly expressed in all feather follicles at E12. ASIP transcript expression was variable and we report four novel ASIP transcripts. ASIP is strongly expressed in ventral feather follicles, but not dorsally. AGRP expression within feather follicles was weak. These results demonstrate that the pale-bellied quail phenotype probably involves inhibition of MC1R, as found previously. However, quail may require MC1R activation for eumelanogenesis in dorsal feathers which may have important implications for an understanding of colour pattern formation in vertebrates.</p

    Population genetics of mouse lemur vomeronasal receptors: current versus past selection and demographic inference.

    Get PDF
    BACKGROUND: A major effort is underway to use population genetic approaches to identify loci involved in adaptation. One issue that has so far received limited attention is whether loci that show a phylogenetic signal of positive selection in the past also show evidence of ongoing positive selection at the population level. We address this issue using vomeronasal receptors (VRs), a diverse gene family in mammals involved in intraspecific communication and predator detection. In mouse lemurs, we previously demonstrated that both subfamilies of VRs (V1Rs and V2Rs) show a strong signal of directional selection in interspecific analyses. We predicted that ongoing sexual selection and/or co-evolution with predators may lead to current directional or balancing selection on VRs. Here, we re-sequence 17 VRs and perform a suite of selection and demographic analyses in sympatric populations of two species of mouse lemurs (Microcebus murinus and M. ravelobensis) in northwestern Madagascar. RESULTS: M. ravelobensis had consistently higher genetic diversity at VRs than M. murinus. In general, we find little evidence for positive selection, with most loci evolving under purifying selection and one locus even showing evidence of functional loss in M. ravelobensis. However, a few loci in M. ravelobensis show potential evidence of positive selection. Using mismatch distributions and expansion models, we infer a more recent colonisation of the habitat by M. murinus than by M. ravelobensis, which most likely speciated in this region earlier on. CONCLUSIONS: These findings suggest that the analysis of VR variation is useful in inferring demographic and phylogeographic history of mouse lemurs. In conclusion, this study reveals a substantial heterogeneity over time in selection on VR loci, suggesting that VR evolution is episodic

    Multiple origins of melanism in two species of North American tree squirrel ( Sciurus )

    Get PDF
    Abstract: Background: While our understanding of the genetic basis of convergent evolution has improved there are still many uncertainties. Here we investigate the repeated evolution of dark colouration (melanism) in eastern fox squirrels (Sciurus niger; hereafter “fox squirrels”) and eastern gray squirrels (S. carolinensis; hereafter “gray squirrels”). Results: We show that convergent evolution of melanism has arisen by independent genetic mechanisms in two populations of the fox squirrel. In a western population, melanism is associated with a 24 bp deletion in the melanocortin-1-receptor gene (MC1RΔ24 allele), whereas in a south-eastern population, melanism is associated with a point substitution in the agouti signalling protein gene causing a Gly121Cys mutation. The MC1R∆24 allele is also associated with melanism in gray squirrels, and, remarkably, all the MC1R∆24 haplotypes are identical in the two species. Evolutionary analyses show that the MC1R∆24 haplotype is more closely related to other MC1R haplotypes in the fox squirrel than in the gray squirrel. Modelling supports the possibility of gene flow between the two species. Conclusions: The presence of the MC1R∆24 allele and melanism in gray squirrels is likely due to introgression from fox squirrels, although we cannot completely rule out alternative hypotheses including introgression from gray squirrels to fox squirrels, or an ancestral polymorphism. Convergent melanism in these two species of tree squirrels has evolved by at least two and probably three different evolutionary routes

    Evolution of CYP2J19, a gene involved in colour vision and red coloration in birds: positive selection in the face of conservation and pleiotropy.

    Get PDF
    BACKGROUND: Exaggerated signals, such as brilliant colours, are usually assumed to evolve through antagonistic coevolution between senders and receivers, but the underlying genetic mechanisms are rarely known. Here we explore a recently identified "redness gene", CYP2J19, that is highly interesting in this context since it encodes a carotenoid-modifying enzyme (a C4 ketolase involved in both colour signalling and colour discrimination in the red (long wavelength) spectral region.) RESULTS: A single full-length CYP2J19 was retrieved from 43 species out of 70 avian genomes examined, representing all major avian clades. In addition, CYP2J19 sequences from 13 species of weaverbirds (Ploceidae), seven of which have red C4-ketocarotenoid coloration were analysed. Despite the conserved retinal function and pleiotropy of CYP2J19, analyses indicate that the gene has been positively selected throughout the radiation of birds, including sites within functional domains described in related CYP (cytochrome P450) loci. Analyses of eight further CYP loci across 25 species show that positive selection is common in this gene family in birds. There was no evidence for a change in selection pressure on CYP2J19 following co-option for red coloration in the weaverbirds. CONCLUSIONS: The results presented here are consistent with an ancestral conserved function of CYP2J19 in the pigmentation of red retinal oil droplets used for colour vision, and its subsequent co-option for red integumentary coloration. The cause of positive selection on CYP2J19 is unclear, but may be partly related to compensatory mutations related to selection at the adjacent gene CYP2J40

    Genetic analysis of hybridization and introgression between wild mongoose and brown lemurs.

    Get PDF
    BACKGROUND: Hybrid zones generally represent areas of secondary contact after speciation. The nature of the interaction between genes of individuals in a hybrid zone is of interest in the study of evolutionary processes. In this study, data from nuclear microsatellites and mitochondrial DNA sequences were used to genetically characterize hybridization between wild mongoose lemurs (Eulemur mongoz) and brown lemurs (E. fulvus) at Anjamena in west Madagascar. RESULTS: Two segments of mtDNA have been sequenced and 12 microsatellite loci screened in 162 brown lemurs and mongoose lemurs. Among the mongoose lemur population at Anjamena, we identified two F1 hybrids (one also having the mtDNA haplotype of E. fulvus) and six other individuals with putative introgressed alleles in their genotype. Principal component analysis groups both hybrids as intermediate between E. mongoz and E. fulvus and admixture analyses revealed an admixed genotype for both animals. Paternity testing proved one F1 hybrid to be fertile. Of the eight brown lemurs genotyped, all have either putative introgressed microsatellite alleles and/or the mtDNA haplotype of E. mongoz. CONCLUSION: Introgression is bidirectional for the two species, with an indication that it is more frequent in brown lemurs than in mongoose lemurs. We conclude that this hybridization occurs because mongoose lemurs have expanded their range relatively recently. Introgressive hybridization may play an important role in the unique lemur radiation, as has already been shown in other rapidly evolving animals.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Coloration and the Genetics of Adaptation

    Get PDF
    Coat color is often used as camouflage and so has evolutionary benefit. How is coat color determined

    The effect of colour vision status on the detection and selection of fruits by tamarins (Saguinus spp.)

    Get PDF
    The evolution of trichromatic colour vision by the majority of anthropoid primates has been linked to the efficient detection and selection of food, particularly ripe fruits among leaves in dappled light. Modelling of visual signals has shown that trichromats should be more efficient than dichromats at distinguishing both fruits from leaves and ripe from unripe fruits. This prediction is tested in a controlled captive setting using stimuli recreated from those actually encountered by wild tamarins (Saguinus spp.). Dietary data and reflectance spectra of Abuta fluminum fruits eaten by wild saddleback (Saguinus fuscicollis) and moustached (Saguinus mystax) tamarins and their associated leaves were collected in Peru. A. fluminum leaves, and fruits in three stages of ripeness, were reproduced and presented to captive saddleback and red-bellied tamarins (Saguinus labiatus). Trichromats were quicker to learn the task and were more efficient at selecting ripe fruits than were dichromats. This is the first time that a trichromatic foraging advantage has been demonstrated for monkeys using naturalistic stimuli with the same chromatic properties as those encountered by wild animal
    corecore