220 research outputs found

    Biomasa de raíces finas en cuatro estadíos de sucesión del Bosque Seco Tropical y dos estaciones climáticas, Santa Rosa, Costa Rica

    Get PDF
    Proyecto de Graduación (Licenciatura en Ingeniería Forestal) Instituto Tecnológico de Costa Rica. Escuela de Ingeniería Forestal, 2011.In Costa Rica, tropical dry forests had suffered the effects of land change for a long time; Hence, the study of fine roots ( ≤ 2mm diameter) among successional forest stages would allow us to evaluate the degree of these disturbances. I studied fine root biomass up to 40 cm soil depth along a successional gradient in two climatic seasons; rainy (November 2010) and dry (March 2011.The dry season resulted with more fine root biomass; according to the literature this is a strategy to capture water and nutrients from deeper soil layers. The rainy season resulted with no significant differences among total fine root biomass (p>0,05); late forest obtain 361,943 g/m2 of fine root biomass, pastures had 341,760 g/m2 ; early and intermediate forests obtained 313,140 ; 297,651 g/m2 respectively. In the dry season, significant differences where found (p< 0,05) among the following three groups early forest (520,713 g/m2), pastures (224,693 g/m2) and intermediate (362,083 g/m2 ) plus late (419,823 g/m2 ). Finally I compared the total fine root biomass between dry and rainy seasons and only significant differences where found for early stage; rainy (313,140 g/m2) versus dry (520,713 g/m2). I conclude that there is a clear trend of increasing fine root biomass along the successional stages, however no stadistical significant differences were found probably because the sample size and sampling system should be improved.Instituto Tecnológico de Costa Ric

    Single-cell deconvolution of head and neck squamous cell carcinoma

    Get PDF
    Complexities in cell-type composition have rightfully led to skepticism and caution in the interpretation of bulk transcriptomic analyses. Recent studies have shown that deconvolution algorithms can be utilized to computationally estimate cell-type proportions from the gene expression data of bulk blood samples, but their performance when applied to tumor tissues, including those from head and neck, remains poorly characterized. Here, we use single-cell data (~6000 single cells) collected from 21 head and neck squamous cell carcinoma (HNSCC) samples to generate cell-type-specific gene expression signatures. We leverage bulk RNA-seq data from \u3e500 HNSCC samples profiled by The Cancer Genome Atlas (TCGA), and using single-cell data as a reference, apply two newly developed deconvolution algorithms (CIBERSORTx and MuSiC) to the bulk transcriptome data to quantitatively estimate cell-type proportions for each tumor in TCGA. We show that these two algorithms produce similar estimates of constituent/major cell-type proportions and that a high T-cell fraction correlates with improved survival. By further characterizing T-cell subpopulations, we identify that regulatory T-cells (

    Alkylation damage causes MMR-dependent chromosomal instability in vertebrate embryos

    Get PDF
    SN1-type alkylating agents, like N-methyl-N-nitrosourea (MNU) and N-ethyl-N-nitrosourea (ENU), are potent mutagens. Exposure to alkylating agents gives rise to O6-alkylguanine, a modified base that is recognized by DNA mismatch repair (MMR) proteins but is not repairable, resulting in replication fork stalling and cell death. We used a somatic mutation detection assay to study the in vivo effects of alkylation damage on lethality and mutation frequency in developing zebrafish embryos. Consistent with the damage-sensing role of the MMR system, mutant embryos lacking the MMR enzyme MSH6 displayed lower lethality than wild-type embryos after exposure to ENU and MNU. In line with this, alkylation-induced somatic mutation frequencies were found to be higher in wild-type embryos than in the msh6 loss-of-function mutants. These mutations were found to be chromosomal aberrations that may be caused by chromosomal breaks that arise from stalled replication forks. As these chromosomal breaks arise at replication, they are not expected to be repaired by non-homologous end joining. Indeed, Ku70 loss-of-function mutants were found to be equally sensitive to ENU as wild-type embryos. Taken together, our results suggest that in vivo alkylation damage results in chromosomal instability and cell death due to aberrantly processed MMR-induced stalled replication forks

    Pattern formation in directional solidification under shear flow. I: Linear stability analysis and basic patterns

    Full text link
    An asymptotic interface equation for directional solidification near the absolute stabiliy limit is extended by a nonlocal term describing a shear flow parallel to the interface. In the long-wave limit considered, the flow acts destabilizing on a planar interface. Moreover, linear stability analysis suggests that the morphology diagram is modified by the flow near the onset of the Mullins-Sekerka instability. Via numerical analysis, the bifurcation structure of the system is shown to change. Besides the known hexagonal cells, structures consisting of stripes arise. Due to its symmetry-breaking properties, the flow term induces a lateral drift of the whole pattern, once the instability has become active. The drift velocity is measured numerically and described analytically in the framework of a linear analysis. At large flow strength, the linear description breaks down, which is accompanied by a transition to flow-dominated morphologies, described in a companion paper. Small and intermediate flows lead to increased order in the lattice structure of the pattern, facilitating the elimination of defects. Locally oscillating structures appear closer to the instability threshold with flow than without.Comment: 20 pages, Latex, accepted for Physical Review

    Chondrogenic and Gliogenic Subpopulations of Neural Crest Play Distinct Roles during the Assembly of Epibranchial Ganglia

    Get PDF
    In vertebrates, the sensory neurons of the epibranchial (EB) ganglia transmit somatosensory signals from the periphery to the CNS. These ganglia are formed during embryogenesis by the convergence and condensation of two distinct populations of precursors: placode-derived neuroblasts and neural crest- (NC) derived glial precursors. In addition to the gliogenic crest, chondrogenic NC migrates into the pharyngeal arches, which lie in close proximity to the EB placodes and ganglia. Here, we examine the respective roles of these two distinct NC-derived populations during development of the EB ganglia using zebrafish morphant and mutants that lack one or both of these NC populations. Our analyses of mutant and morphant zebrafish that exhibit deficiencies in chondrogenic NC at early stages reveal a distinct requirement for this NC subpopulation during early EB ganglion assembly and segmentation. Furthermore, restoration of wildtype chondrogenic NC in one of these mutants, prdm1a, is sufficient to restore ganglion formation, indicating a specific requirement of the chondrogenic NC for EB ganglia assembly. By contrast, analysis of the sox10 mutant, which lacks gliogenic NC, reveals that the initial assembly of ganglia is not affected. However, during later stages of development, EB ganglia are dispersed in the sox10 mutant, suggesting that glia are required to maintain normal EB ganglion morphology. These results highlight novel roles for two subpopulations of NC cells in the formation and maintenance of EB ganglia: chondrogenic NC promotes the early-stage formation of the developing EB ganglia while glial NC is required for the late-stage maintenance of ganglion morphology

    Identification of Early Requirements for Preplacodal Ectoderm and Sensory Organ Development

    Get PDF
    Preplacodal ectoderm arises near the end of gastrulation as a narrow band of cells surrounding the anterior neural plate. This domain later resolves into discrete cranial placodes that, together with neural crest, produce paired sensory structures of the head. Unlike the better-characterized neural crest, little is known about early regulation of preplacodal development. Classical models of ectodermal patterning posit that preplacodal identity is specified by readout of a discrete level of Bmp signaling along a DV gradient. More recent studies indicate that Bmp-antagonists are critical for promoting preplacodal development. However, it is unclear whether Bmp-antagonists establish the proper level of Bmp signaling within a morphogen gradient or, alternatively, block Bmp altogether. To begin addressing these issues, we treated zebrafish embryos with a pharmacological inhibitor of Bmp, sometimes combined with heat shock-induction of Chordin and dominant-negative Bmp receptor, to fully block Bmp signaling at various developmental stages. We find that preplacodal development occurs in two phases with opposing Bmp requirements. Initially, Bmp is required before gastrulation to co-induce four transcription factors, Tfap2a, Tfap2c, Foxi1, and Gata3, which establish preplacodal competence throughout the nonneural ectoderm. Subsequently, Bmp must be fully blocked in late gastrulation by dorsally expressed Bmp-antagonists, together with dorsally expressed Fgf and Pdgf, to specify preplacodal identity within competent cells abutting the neural plate. Localized ventral misexpression of Fgf8 and Chordin can activate ectopic preplacodal development anywhere within the zone of competence, whereas dorsal misexpression of one or more competence factors can activate ectopic preplacodal development in the neural plate. Conversely, morpholino-knockdown of competence factors specifically ablates preplacodal development. Our work supports a relatively simple two-step model that traces regulation of preplacodal development to late blastula stage, resolves two distinct phases of Bmp dependence, and identifies the main factors required for preplacodal competence and specification

    Thyrotroph Embryonic Factor Regulates Light-Induced Transcription of Repair Genes in Zebrafish Embryonic Cells

    Get PDF
    Numerous responses are triggered by light in the cell. How the light signal is detected and transduced into a cellular response is still an enigma. Each zebrafish cell has the capacity to directly detect light, making this organism particularly suitable for the study of light dependent transcription. To gain insight into the light signalling mechanism we identified genes that are activated by light exposure at an early embryonic stage, when specialised light sensing organs have not yet formed. We screened over 14,900 genes using micro-array GeneChips, and identified 19 light-induced genes that function primarily in light signalling, stress response, and DNA repair. Here we reveal that PAR Response Elements are present in all promoters of the light-induced genes, and demonstrate a pivotal role for the PAR bZip transcription factor Thyrotroph embryonic factor (Tef) in regulating the majority of light-induced genes. We show that tefβ transcription is directly regulated by light while transcription of tefα is under circadian clock control at later stages of development. These data leads us to propose their involvement in light-induced UV tolerance in the zebrafish embryo

    Impulsivity and self-harm in adolescence: a systematic review

    Get PDF
    Research supports an association between impulsivity and self-harm, yet inconsistencies in methodology across studies have complicated understanding of this relationship. This systematic review examines the association between impulsivity and self-harm in community-based adolescents aged 11-25 years and aims to integrate findings according to differing concepts and methods. Electronic searches of EMBASE, MEDLINE, PsychINFO, CINAHL, PubMed and The Cochrane Library, and manual searches of reference lists of relevant reviews, identified 4,496 articles published up to July 2015, of which 28 met inclusion criteria. Twenty-four of the studies reported an association between broadly specified impulsivity and self-harm. However, findings varied according to the conception and measurement of impulsivity and the precision with which self-harm behaviours were specified. Specifically, lifetime non-suicidal self-injury was most consistently associated with mood-based impulsivity related traits. However, cognitive facets of impulsivity (relating to difficulties maintaining focus or acting without forethought) differentiated current self-harm from past self-harm. These facets also distinguished those with thoughts of self-harm (ideation) from those who acted on thoughts (enaction). The findings suggested that mood-based impulsivity is related to the initiation of self-harm, while cognitive facets of impulsivity are associated with the maintenance of self-harm. In addition, behavioural impulsivity is most relevant to self-harm under conditions of negative affect. Collectively, the findings indicate that distinct impulsivity facets confer unique risks across the life-course of self-harm. From a clinical perspective, the review suggests that interventions focusing on reducing rash reactivity to emotions or improving self-regulation and decision-making may offer most benefit in supporting those who self-harm
    corecore