479 research outputs found

    UNC-41/stonin functions with AP2 to recycle synaptic vesicles in Caenorhabditis elegans

    Get PDF
    pre-printThe recycling of synaptic vesicles requires the recovery of vesicle proteins and membrane. Members of the stonin protein family (Drosophila Stoned B, mammalian stonin 2) have been shown to link the synaptic vesicle protein synaptotagmin to the endocytic machinery. Here we characterize the unc-41 gene, which encodes the stonin ortholog in the nematode Caenorhabditis elegans. Transgenic expression of Drosophila stonedB rescues unc-41 mutant phenotypes, demonstrating that UNC-41 is a bona fide member of the stonin family. In unc-41 mutants, synaptotagmin is present in axons, but is mislocalized and diffuse. In contrast, UNC-41 is localized normally in synaptotagmin mutants, demonstrating a unidirectional relationship for localization. The phenotype of snt-1 unc-41 double mutants is stronger than snt-1 mutants, suggesting that UNC-41 may have additional, synaptotagmin-independent functions. We also show that unc-41 mutants have defects in synaptic vesicle membrane endocytosis, including a ,50% reduction of vesicles in both acetylcholine and GABA motor neurons. These endocytic defects are similar to those observed in apm-2 mutants, which lack the m2 subunit of the AP2 adaptor complex. However, no further reduction in synaptic vesicles was observed in unc-41 apm-2 double mutants, suggesting that UNC-41 acts in the same endocytic pathway as m2 adaptin

    Is it time to approach spontaneous pneumothorax more conservatively?

    Get PDF
    A recent study provides modest evidence for observational management over interventional treatment, sparing patients from invasive procedures.Gregory Jones, MD; Jeremias Georgiadis, MD; Valerie Staples, DO (South Baldwin Regional Medical Center, Foley, AL), Rebecca Mullen, MD, MPH (University of Colorado, Family Medicine Residency, Denver). Deputy Editor: Anne Mounsey, MD (Department of Family Medicine, University of North Carolina, Chapel Hill)Includes bibliographical reference

    Cell Autonomous Expression of Perlecan and Plasticity of Cell Shape in Embryonic Muscle ofCaenorhabditis elegans

    Get PDF
    AbstractPerlecan, a component of the extracellular matrix (ECM), is essential for myofilament formation and muscle attachment inCaenorhabditis elegans.We show here that perlecan is a product of muscle and that it behaves in a cell autonomous fashion. That is, perlecan expressed in an individual muscle cell does not spread beyond the borders of the ECM underlying that cell. Using a polyclonal antibody that recognizes all isoforms of perlecan, we demonstrate that this protein first appears extracellularly at the comma stage (approx. 350 min) of development. We also show that during morphogenesis muscle cells have a heretofore undescribed plasticity of shape. This ability to regulate cell shape allows cells within a muscle quadrant to compensate for missing cells and to form a functional quadrant. A dramatic example of this morphological flexibility can be observed in animals in which the D blastomere has been removed by laser ablation. Such animals, lacking 20 of the 81 embryonic body wall muscle cells, can survive to become viable adult animals indistinguishable from wildtype animals. This demonstrates that the assembly of an embryo via a stereotypic lineage does not preclude a more general regulation during morphogenesis. It appears that embryos are flexible enough to immediately compensate for drastic alterations in tissue composition, a feature of development that may be of general importance during evolution

    Cell Autonomous Expression of Perlecan and Plasticity of Cell Shape in Embryonic Muscle ofCaenorhabditis elegans

    Get PDF
    AbstractPerlecan, a component of the extracellular matrix (ECM), is essential for myofilament formation and muscle attachment inCaenorhabditis elegans.We show here that perlecan is a product of muscle and that it behaves in a cell autonomous fashion. That is, perlecan expressed in an individual muscle cell does not spread beyond the borders of the ECM underlying that cell. Using a polyclonal antibody that recognizes all isoforms of perlecan, we demonstrate that this protein first appears extracellularly at the comma stage (approx. 350 min) of development. We also show that during morphogenesis muscle cells have a heretofore undescribed plasticity of shape. This ability to regulate cell shape allows cells within a muscle quadrant to compensate for missing cells and to form a functional quadrant. A dramatic example of this morphological flexibility can be observed in animals in which the D blastomere has been removed by laser ablation. Such animals, lacking 20 of the 81 embryonic body wall muscle cells, can survive to become viable adult animals indistinguishable from wildtype animals. This demonstrates that the assembly of an embryo via a stereotypic lineage does not preclude a more general regulation during morphogenesis. It appears that embryos are flexible enough to immediately compensate for drastic alterations in tissue composition, a feature of development that may be of general importance during evolution

    Non-invasive molecular imaging of inflammatory macrophages in allograft rejection.

    Get PDF
    BackgroundMacrophages represent a critical cell type in host defense, development and homeostasis. The ability to image non-invasively pro-inflammatory macrophage infiltrate into a transplanted organ may provide an additional tool for the monitoring of the immune response of the recipient against the donor graft. We therefore decided to image in vivo sialoadhesin (Sn, Siglec 1 or CD169) using anti-Sn mAb (SER-4) directly radiolabelled with (99m)Tc pertechnetate.MethodsWe used a heterotopic heart transplantation model where allogeneic or syngeneic heart grafts were transplanted into the abdomen of recipients. In vivo nanosingle-photon emission computed tomography (SPECT/CT) imaging was performed 7 days post transplantation followed by biodistribution and histology.ResultsIn wild-type mice, the majority of (99m)Tc-SER-4 monoclonal antibody cleared from the blood with a half-life of 167 min and was located predominantly on Sn(+) tissues in the spleen, liver and bone marrow. The biodistribution in the transplantation experiments confirmed data derived from the non-invasive SPECT/CT images, with significantly higher levels of (99m)Tc-SER-4 observed in allogeneic grafts (9.4 (±2.7) %ID/g) compared to syngeneic grafts (4.3 (±10.3) %ID/g) (p = 0.0022) or in mice which received allogeneic grafts injected with (99m)Tc-IgG isotype control (5.9 (±0.6) %ID/g) (p = 0.0185). The transplanted heart to blood ratio was also significantly higher in recipients with allogeneic grafts receiving (99m)Tc-SER-4 as compared to recipients with syngeneic grafts (p = 0.000004) or recipients with allogeneic grafts receiving (99m)Tc-IgG isotype (p = 0.000002).ConclusionsHere, we demonstrate that imaging of Sn(+) macrophages in inflammation may provide an important additional and non-invasive tool for the monitoring of the pathophysiology of cellular immunity in a transplant model

    An efficacy trial of an electronic health record-based strategy to inform patients on safe medication use: The role of written and spoken communication

    Get PDF
    We tested the feasibility and efficacy of an electronic health record (EHR) strategy that automated the delivery of print medication information at the time of prescribing

    Monitoring of In Vivo Function of Superparamagnetic Iron Oxide Labelled Murine Dendritic Cells during Anti-Tumour Vaccination

    Get PDF
    Dendritic cells (DCs) generated in vitro to present tumour antigens have been injected in cancer patients to boost in vivo anti-tumour immune responses. This approach to cancer immunotherapy has had limited success. For anti-tumour therapy, delivery and subsequent migration of DCs to lymph nodes leading to effective stimulation of effector T cells is thought to be essential. The ability to non-invasively monitor the fate of adoptively transferred DCs in vivo using magnetic resonance imaging (MRI) is an important clinical tool to correlate their in vivo behavior with response to treatment. Previous reports of superparamagnetic iron oxides (SPIOs) labelling of different cell types, including DCs, have indicated varying detrimental effects on cell viability, migration, differentiation and immune function. Here we describe an optimised labelling procedure using a short incubation time and low concentration of clinically used SPIO Endorem to successfully track murine DC migration in vivo using MRI in a mouse tumour model. First, intracellular labelling of bone marrow derived DCs was monitored in vitro using electron microscopy and MRI relaxometry. Second, the in vitro characterisation of SPIO labelled DCs demonstrated that viability, phenotype and functions were comparable to unlabelled DCs. Third, ex vivo SPIO labelled DCs, when injected subcutaneously, allowed for the longitudinal monitoring by MR imaging of their migration in vivo. Fourth, the SPIO DCs induced the proliferation of adoptively transferred CD4+ T cells but, most importantly, they primed cytotoxic CD8+ T cell responses to protect against a B16-Ova tumour challenge. Finally, using anatomical information from the MR images, the immigration of DCs was confirmed by the increase in lymph node size post-DC injection. These results demonstrate that the SPIO labelling protocol developed in this study is not detrimental for DC function in vitro and in vivo has potential clinical application in monitoring therapeutic DCs in patients with cancer
    • …
    corecore