103 research outputs found
Measuring the Evolutionary Rate of Cooling of ZZ Ceti
We have finally measured the evolutionary rate of cooling of the pulsating hydrogen atmosphere (DA) white dwarf ZZ Ceti (Ross 548), as reflected by the drift rate of the 213.13260694 s period. Using 41 yr of time-series photometry from 1970 November to 2012 January, we determine the rate of change of this period with time to be dP/dt = (5.2 ± 1.4) × 10–15 s s–1 employing the O – C method and (5.45 ± 0.79) × 10–15 s s–1 using a direct nonlinear least squares fit to the entire lightcurve. We adopt the dP/dt obtained from the nonlinear least squares program as our final determination, but augment the corresponding uncertainty to a more realistic value, ultimately arriving at the measurement of dP/dt = (5.5 ± 1.0) × 10–15 s s–1. After correcting for proper motion, the evolutionary rate of cooling of ZZ Ceti is computed to be (3.3 ± 1.1) × 10–15 s s–1. This value is consistent within uncertainties with the measurement of (4.19 ± 0.73) × 10–15 s s–1 for another similar pulsating DA white dwarf, G 117-B15A. Measuring the cooling rate of ZZ Ceti helps us refine our stellar structure and evolutionary models, as cooling depends mainly on the core composition and stellar mass. Calibrating white dwarf cooling curves with this measurement will reduce the theoretical uncertainties involved in white dwarf cosmochronometry. Should the 213.13 s period be trapped in the hydrogen envelope, then our determination of its drift rate compared to the expected evolutionary rate suggests an additional source of stellar cooling. Attributing the excess cooling to the emission of axions imposes a constraint on the mass of the hypothetical axion particle
Thirty-Five New Pulsating Da White Dwarf Stars
We present 35 new pulsating DA (hydrogen atmosphere) white dwarf stars discovered from the Sloan Digital Sky Survey (SDSS) and the Hamburg Quasar Survey (HQS). We have acquired high-speed time series photometry of preselected DA white dwarfs with a prime focus CCD photometer on the 2.1 m telescope at McDonald Observatory over 15 months. We selected these stars on the basis of prior photometric and spectroscopic observations by the SDSS and HQS. For the homogeneous SDSS sample, we achieve a success rate of 80% for finding new variables at a detection threshold of 0.1%-0.3%. With 35 newly discovered DA variable white dwarfs, we almost double the current sample of 39
Redefining the Empirical ZZ Ceti Instability Strip
We use the new ZZ Ceti stars (hydrogen-atmosphere white dwarf variables; DAVs) discovered within the Sloan Digital Sky Survey (Mukadam et al. 2004) to redefine the empirical ZZ Ceti instability strip. This is the first time since the discovery of white dwarf variables in 1968 that we have a homogeneous set of spectra acquired using the same instrument on the same telescope, and with consistent data reductions, for a statistically significant sample of ZZ Ceti stars. The homogeneity of the spectra reduces the scatter in the spectroscopic temperatures, and we find a narrow instability strip of width ~950 K, from 10,850 to 11,800 K. We question the purity of the DAV instability strip, as we find several nonvariables within. We present our best fit for the red edge and our constraint for the blue edge of the instability strip, determined using a statistical approach
Re-defining the Empirical ZZ Ceti Instability Strip
We use the new ZZ Ceti stars (hydrogen atmosphere white dwarf variables; DAVs) discovered within the Sloan Digital Sky Survey (Mukadam et al. 2004) to re-define the empirical ZZ Ceti instability strip. This is the first time since the discovery of white dwarf variables in 1968 that we have a homogeneous set of spectra acquired using the same instrument on the same telescope, and with con- sistent data reductions, for a statistically significant sample of ZZ Ceti stars. The homogeneity of the spectra reduces the scatter in the spectroscopic temperatures and we find a narrow instability strip of width ∼ 950K, from 10850–11800K. We question the purity of the DAV instability strip as we find several non-variables within. We present our best fit for the red edge and our constraint for the blue edge of the instability strip, determined using a statistical approach
Evolutionary Timescale of the DAV G117-B15A: The Most Stable Optical Clock Known
We observe G117-B15A, the most precise optical clock known, to measure the
rate of change of the main pulsation period of this blue-edge DAV white dwarf.
Even though the obtained value is only within 1 sigma, Pdot = (2.3 +/- 1.4) x
10^{-15} s/s, it is already constraining the evolutionary timescale of this
cooling white dwarf star.Comment: Accepted for publication in ApJ
Recommended from our members
Rapid Orbital Decay in the 12.75-Minute Binary White Dwarf J0651+2844
We report the detection of orbital decay in the 12.75-minute, detached binary white dwarf (WD) SDSS J065133.338+284423.37 (hereafter J0651). Our photometric observations over a 13 month baseline constrain the orbital period to 765.206543(55) s and indicate that the orbit is decreasing at a rate of (-9.8 +/- 2.8) x 10(-12) s s(-1) (or -0.31 +/- 0.09 ms yr(-1)). We revise the system parameters based on our new photometric and spectroscopic observations: J0651 contains two WDs with M-1 = 0.26 +/- 0.04 M-circle dot and M-2 = 0.50 +/- 0.04 M-circle dot. General relativity predicts orbital decay due to gravitational wave radiation of (-8.2 +/- 1.7) x 10(-12) s s(-1) (or -0.26 +/- 0.05 ms yr(-1)). Our observed rate of orbital decay is consistent with this expectation. J0651 is currently the second-loudest gravitational wave source known in the milli-Hertz range and the loudest non-interacting binary, which makes it an excellent verification source for future missions aimed at directly detecting gravitational waves. Our work establishes the feasibility of monitoring this system's orbital period decay at optical wavelengths.NSF AST-0909107, AST-1008734Norman Hackerman Advanced Research Program 003658-0252-2009Astronom
Re-defining the Empirical ZZ Ceti Instability Strip
We use the new ZZ Ceti stars (hydrogen atmosphere white dwarf variables;
DAVs) discovered within the Sloan Digital Sky Survey (Mukadam et al. 2004) to
re-define the empirical ZZ Ceti instability strip. This is the first time since
the discovery of white dwarf variables in 1968 that we have a homogeneous set
of spectra acquired using the same instrument on the same telescope, and with
consistent data reductions, for a statistically significant sample of ZZ Ceti
stars. The homogeneity of the spectra reduces the scatter in the spectroscopic
temperatures and we find a narrow instability strip of width ~950K, from
10850--11800K. We question the purity of the DAV instability strip as we find
several non-variables within. We present our best fit for the red edge and our
constraint for the blue edge of the instability strip, determined using a
statistical approach.Comment: 14 pages, 5 pages, ApJ paper, accepte
Evidence For Temperature Change And Oblique Pulsation From Light Curve Fits Of The Pulsating White Dwarf GD 358
Convective driving, the mechanism originally proposed by Brickhill for pulsating white dwarf stars, has gained general acceptance as the generic linear instability mechanism in DAV and dbV white dwarfs. This physical mechanism naturally leads to a nonlinear formulation, reproducing the observed light curves of many pulsating white dwarfs. This numerical model can also provide information on the average depth of a star's convection zone and the inclination angle of its pulsation axis. In this paper, we give two sets of results of nonlinear light curve fits to data on the dbV GD 358. Our first fit is based on data gathered in 2006 by the Whole Earth Telescope; this data set was multiperiodic containing at least 12 individual modes. Our second fit utilizes data obtained in 1996, when GD 358 underwent a dramatic change in excited frequencies accompanied by a rapid increase in fractional amplitude; during this event it was essentially monoperiodic. We argue that GD 358's convection zone was much thinner in 1996 than in 2006, and we interpret this as a result of a short-lived increase in its surface temperature. In addition, we find strong evidence of oblique pulsation using two sets of evenly split triplets in the 2006 data. This marks the first time that oblique pulsation has been identified in a variable white dwarf star.Delaware Asteroseismic Research CenterNational Science Foundation AST-0909107, AST-0607840Norman Hackerman Advanced Research Program 003658-0255-2007Crystal Trust FoundationMt. Cuba ObservatoryUniversity of DelawareAstronom
GW Librae: Still Hot Eight Years Post-Outburst
We report continued Hubble Space Telescope (HST) ultraviolet spectra and
ground-based optical photometry and spectroscopy of GW Librae eight years after
its largest known dwarf nova outburst in 2007. This represents the longest
cooling timescale measured for any dwarf nova. The spectra reveal that the
white dwarf still remains about 3000 K hotter than its quiescent value. Both
ultraviolet and optical light curves show a short period of 364-373 s, similar
to one of the non-radial pulsation periods present for years prior to the
outburst, and with a similar large UV/optical amplitude ratio. A large
modulation at a period of 2 h (also similar to that observed prior to outburst)
is present in the optical data preceding and during the HST observations, but
the satellite observation intervals did not cover the peaks of the optical
modulation so it is not possible to determine its corresponding UV amplitude.
The similarity of the short and long periods to quiescent values implies the
pulsating, fast spinning white dwarf in GW Lib may finally be nearing its
quiescent configuration.Comment: 6 figures, accepted in A
- …