7 research outputs found

    Studies on the degradation of starch

    Get PDF
    Differential thermal analysis was carried out on starches from several different botanical sources, and of their component amylose and amylopectin, and the thermograms compared. It was found that the presence of "inert" materials such as alumina profoundly affected the thermograms or starch. All analyses had therefore to be carried out without the addition of any "inert" material. Factors affecting the starch thermograms, such as the physical structure of the granule and percentage amylose content, were investigated. It was noted that thermograms similar to those of starch were obtained from the oligomer series G₁ to G₇, where thermal stability of these oligomers was found to increase with increase in their chainlength.The pyrolysis over a temperature range of 220 to 300°C of the oligomer series,G₁ to G₇, ß-Schardinger dextrin, potato starch and its components amylose and amylopectin, retrograded amylose, and dextran was studied. The amounts of the various products from each substance at the different temperatures were compared.Rates of production of the major volatiles, i.e. carbon monoxide, carbon dioxide and water, from each of the compounds were measured at the various temperatures, and activation energies for the degradation calculated. The natures of the residues and 'syrup' fractions were investigated. The influence on the thermal breakdown of temperature, molecular size and type of glycosidic linkage were studied. The significance of these results is discussed and possible modes of degradation are suggested

    Development of a novel motivational interviewing (MI) informed peer-support intervention to support mothers to breastfeed for longer

    Get PDF
    Background: Many women in the UK stop breastfeeding before they would like to, and earlier than is recommended by the World Health Organization (WHO). Given the potential health benefits for mother and baby, new ways of supporting women to breastfeed for longer are required. The purpose of this study was to develop and characterise a novel Motivational Interviewing (MI) informed breastfeeding peer-support intervention. Methods: Qualitative interviews with health professionals and service providers (n=14), and focus groups with mothers (n=14), fathers (n=3), and breastfeeding peer-supporters (n=15) were carried out to understand experiences of breastfeeding peer-support and identify intervention options. Data were audio-recorded, transcribed, and analysed thematically. Consultation took place with a combined professional and lay Stakeholder Group (n=23). The Behaviour Change Wheel (BCW) guided intervention development process used the findings of the qualitative research and stakeholder consultation, alongside evidence from existing literature, to identify: the target behaviour to be changed; sources of this behaviour based on the Capability, Opportunity and Motivation (COM-B) model; intervention functions that could alter this behaviour; and; mode of delivery for the intervention. Behaviour change techniques included in the intervention were categorised using the Behaviour Change Technique Taxonomy Version 1 (BCTTv1). Results: Building knowledge, skills, confidence, and providing social support were perceived to be key functions of breastfeeding peer-support interventions that aim to decrease early discontinuation of breastfeeding. These features of breastfeeding peer-support mapped onto the BCW education, training, modelling and environmental restructuring intervention functions. Behaviour change techniques (BCTTv1) included social support, problem solving, and goal setting. The intervention included important inter-personal relational features (e.g. trust, honesty, kindness), and the BCTTv1 needed adaptation to incorporate this. Conclusions: The MI-informed breastfeeding peer-support intervention developed using this systematic and user-informed approach has a clear theoretical basis and well-described behaviour 3 change techniques. The process described could be useful in developing other complex interventions that incorporate peer-support and/or MI

    ICDP workshop on the Lake Tanganyika Scientific Drilling Project: a late Miocene–present record of climate, rifting, and ecosystem evolution from the world's oldest tropical lake

    Get PDF
    The Neogene and Quaternary are characterized by enormous changes in global climate and environments, including global cooling and the establishment of northern high-latitude glaciers. These changes reshaped global ecosystems, including the emergence of tropical dry forests and savannahs that are found in Africa today, which in turn may have influenced the evolution of humans and their ancestors. However, despite decades of research we lack long, continuous, well-resolved records of tropical climate, ecosystem changes, and surface processes necessary to understand their interactions and influences on evolutionary processes. Lake Tanganyika, Africa, contains the most continuous, long continental climate record from the mid-Miocene (∌10 Ma) to the present anywhere in the tropics and has long been recognized as a top-priority site for scientific drilling. The lake is surrounded by the Miombo woodlands, part of the largest dry tropical biome on Earth. Lake Tanganyika also harbors incredibly diverse endemic biota and an entirely unexplored deep microbial biosphere, and it provides textbook examples of rift segmentation, fault behavior, and associated surface processes. To evaluate the interdisciplinary scientific opportunities that an ICDP drilling program at Lake Tanganyika could offer, more than 70 scientists representing 12 countries and a variety of scientific disciplines met in Dar es Salaam, Tanzania, in June 2019. The team developed key research objectives in basin evolution, source-to-sink sedimentology, organismal evolution, geomicrobiology, paleoclimatology, paleolimnology, terrestrial paleoecology, paleoanthropology, and geochronology to be addressed through scientific drilling on Lake Tanganyika. They also identified drilling targets and strategies, logistical challenges, and education and capacity building programs to be carried out through the project. Participants concluded that a drilling program at Lake Tanganyika would produce the first continuous Miocene–present record from the tropics, transforming our understanding of global environmental change, the environmental context of human origins in Africa, and providing a detailed window into the dynamics, tempo and mode of biological diversification and adaptive radiations.© Author(s) 2020. This open access article is distributed under the Creative Commons Attribution 4.0 License

    Crossing Frontiers in Tackling Pathways of Biological Invasions

    No full text
    corecore