14,299 research outputs found
Lepton flavor violating and conversion in unparticle physics
We have studied lepton flavor violation processes and
conversion in nuclei induced by unparticle. Both and conversion rate strongly
depend on the scale dimension and the unparticle coupling
(K=V, A, S, P). Present experimental upper bounds on
, and put stringent constraints on the parameters of unaprticle physics. The
scale dimensions around 2 are favored for the unparticle scale
of and the unparticle coupling of
. is proportional to
for the pure vector and scalar couplings between
unparticle and SM fermions, this peculiar atomatic number dependence can be
used to distinguish unparticle from other theoretical models.Comment: 16 pages, 5 figure
Study of axial strain induced torsion of single wall carbon nanotubes by 2D continuum anharmonic anisotropic elastic model
Recent molecular dynamic simulations have found chiral single wall carbon
nanotubes (SWNTs) twist during stretching, which is similar to the motion of a
screw. Obviously this phenomenon, as a type of curvature-chirality effect, can
not be explained by usual isotropic elastic theory of SWNT. More interestingly,
with larger axial strains (before buckling), the axial strain induced torsion
(a-SIT) shows asymmetric behaviors for axial tensile and compressing strains,
which suggests anharmonic elasticity of SWNTs plays an important role in real
a-SIT responses. In order to study the a-SIT of chiral SWNTs with actual sizes,
and avoid possible deviations of computer simulation results due to the
finite-size effect, we propose a 2D analytical continuum model which can be
used to describe the the SWNTs of arbitrary chiralities, curvatures, and
lengths, with the concerning of anisotropic and anharmonic elasticity of SWNTs.
This elastic energy of present model comes from the continuum limit of lattice
energy based on Second Generation Reactive Empirical Bond Order potential
(REBO-II), a well-established empirical potential for solid carbons. Our model
has no adjustable parameters, except for those presented in REBO-II, and all
the coefficients in the model can be calculated analytically. Using our method,
we obtain a-SIT responses of chiral SWNTs with arbitrary radius, chiralities
and lengthes. Our results are in reasonable agreement with recent molecular
dynamic simulations. [Liang {\it et. al}, Phys. Rev. Lett, , 165501
(2006).] Our approach can also be used to calculate other curvature-chirality
dependent anharmonic mechanic responses of SWNTs.Comment: 14 pages, 2 figure
Recommended from our members
Dynamic change of electrostatic field in TMEM16F permeation pathway shifts its ion selectivity.
TMEM16F is activated by elevated intracellular Ca2+, and functions as a small-conductance ion channel and as a phospholipid scramblase. In contrast to its paralogs, the TMEM16A/B calcium-activated chloride channels, mouse TMEM16F has been reported as a cation-, anion-, or non-selective ion channel, without a definite conclusion. Starting with the Q559K mutant that shows no current rundown and less outward rectification in excised patch, we found that the channel shifted its ion selectivity in response to the change of intracellular Ca2+ concentration, with an increased permeability ratio of Cl- to Na+ (PCl-/PNa+) at a higher Ca2+ level. The gradual shift of relative ion permeability did not correlate with the channel activation state. Instead, it was indicative of an alteration of electrostatic field in the permeation pathway. The dynamic change of ion selectivity suggests a charge-screening mechanism for TMEM16F ion conduction, and it provides hints to further studies of TMEM16F physiological functions
A Welfare Analysis of Spectrum Allocation Policies
Analysis of spectrum allocation policies in the economics literature focuses on competitive bidding for wireless licenses. Auctions generating high bids, as in Germany and the UK, are identified as "successful," while those producing lower receipts, as in Switzerland and the Netherlands, are deemed "fiascoes." Yet, even full and costless extraction of license rents does not map directly to social welfare, because spectrum policies creating rents impose social costs. For example, rules favoring monopoly market structure predictably increase license values, but reduce welfare. This paper attempts to shift analytical focus to the relationship between spectrum policy (including license auctions) and efficiency in output markets. In cross-country comparisons of performance metrics in mobile telephone service markets, empirical estimates suggest that countries that auction licenses do not achieve lower prices or higher levels of output than other nations. Rather, countries allocating greater bandwidth to licensed operators and achieving more competitive market structures realize demonstrable social welfare benefits. These gains generally dominate efficiencies associated with license sales. Policies to increase auction revenues, such as reservation prices and subsidies for weak bidders, should be evaluated in this light.
Conditional Nonlinear Optimal Perturbation: A New Approach to the Stability and Sensitivity Studies in Geophysical Fluid Dynamics
In the stability, sensitivity and predictability studies in geophysical fluid dynamics, linear singular vector (LSV), which is the fastest growing perturbation of the linearized model, is one of the useful tools. However, the linear approximation has strong limitations on the applicability of LSV, since it ignores the nonlinear processes, such as wave-mean flow interactions. The authors have proposed a new method called CNOPs (Conditional Nonlinear Optimal Perturbations), which generalizes LSV into the fully nonlinear category. CNOP is the initial perturbation whose nonlinear evolution attains the maximum value of the cost function, which is constructed according to the problems of interests with physical constraint conditions. In sensitivity and stability analysis of fluid motions, CNOP describes the most unstable (or most sensitive) initial modes. It can also represent the optimal precursor of certain weather or climate event, or stand for the initial error that has largest effect on the uncertainties at the prediction time. In this review paper, we introduce the concept of CNOPs first. Then we present the results on the stability, sensitivity and predictability obtained by CNOP approach, which includes: the sensitivity and stability of ocean’s thermohaline circulation; predictability of El Nino-Southern Oscillation; nonlinear stability problems of a theoretical grassland ecosystem model. It is shown that CNOPs not only reveal the effect of nonlinearity on the physical problems in which nonlinear process plays an important role, but also demonstrate significant physical characteristics that cannot be shown by LSV. For example, in Zebiak-Cane model, CNOPs, rather than LSVs, act as the initial anomaly patterns that evolve into ENSO events most probably, which shows that nonlinearity enhances the evolution of El Nino. In the theoretical Stommel’s model, a nonlinear asymmetric response of THC to the finite perturbation is revealed by using CNOP approach, which cannot be realized by LSV. Other applications of CNOP, which includes ensemble forecast and target observations, are reviewed too. Prospect and challenge in the future applications of CNOP are also discussed
Non-Abelian Proca model based on the improved BFT formalism
We present the newly improved Batalin-Fradkin-Tyutin (BFT) Hamiltonian
formalism and the generalization to the Lagrangian formulation, which provide
the much more simple and transparent insight to the usual BFT method, with
application to the non-Abelian Proca model which has been an difficult problem
in the usual BFT method. The infinite terms of the effectively first class
constraints can be made to be the regular power series forms by ingenious
choice of and -matrices. In this new
method, the first class Hamiltonian, which also needs infinite correction terms
is obtained simply by replacing the original variables in the original
Hamiltonian with the BFT physical variables. Remarkably all the infinite
correction terms can be expressed in the compact exponential form. We also show
that in our model the Poisson brackets of the BFT physical variables in the
extended phase space are the same structure as the Dirac brackets of the
original phase space variables. With the help of both our newly developed
Lagrangian formulation and Hamilton's equations of motion, we obtain the
desired classical Lagrangian corresponding to the first class Hamiltonian which
can be reduced to the generalized St\"uckelberg Lagrangian which is non-trivial
conjecture in our infinitely many terms involved in Hamiltonian and Lagrangian.Comment: Notable improvements in Sec. I
Conditional nonlinear optimal perturbation and its applications
Conditional nonlinear optimal perturbation (CNOP) is proposed to study the predictability of numerical weather and climate prediction. A simple coupled ocean-atmosphere model for ENSO is adopted as an example to show its applicability. In the case of climatological mean state being the basic state, it is shown that CNOP tends to evolve into El Niño or La Niña event more probably than linear singular vector (LSV) on the condition that CNOP and LSV are of the same magnitude of norm. CNOP is also employed to study the prediction error of El Niño and La Niña events. Comparisons between CNOP and LSV demonstrate that CNOP is more applicable in studying the predictability of the models governing the nonlinear motions of oceans and atmospheres
Spectroscopy of -States in Quark Model and Baryon-Antibaryon Enhancements
We study the mass spectrum of the mesons both from
the quark model with triquark correlations and from common quark model with
colormagnetic interactions and with relative S-waves between quarks. Two
cluster configurations and
are considered. In the spectrum
we find rather stable states which have the same quantum number with particle
resonances which are corresponding to the enhancement,
enhancement and enhancement with
spin- or . This imply these enhancements are NOT
experimental artifacts. The color-spin-flavor structures of ,
, and enhancements are revealed. The
existence of spin-
enhancements is predicted.Comment: 45 pages, 5 figure
Suppression of backward scattering of Dirac fermions in iron pnictides Ba(FeRuAs)
We report electronic transport of Dirac cones when Fe is replaced by Ru,
which has an isoelectronic electron configuration to Fe, using single crystals
of Ba(FeRuAs). The electronic transport of parabolic bands is
shown to be suppressed by scattering due to the crystal lattice distortion and
the impurity effect of Ru, while that of the Dirac cone is not significantly
reduced due to the intrinsic character of Dirac cones. It is clearly shown from
magnetoresistance and Hall coefficient measurements that the inverse of average
mobility, proportional to cyclotron effective mass, develops as the square root
of the carrier number (n) of the Dirac cones. This is the unique character of
the Dirac cone linear dispersion relationship. Scattering of Ru on the Dirac
cones is discussed in terms of the estimated mean free path using experimental
parameters.Comment: 6 pages, 3 figures, To be published in Phys. Rev.
- …
