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Abstract. Conditional nonlinear optimal perturbation
(CNOP) is proposed to study the predictability of numeri-
cal weather and climate prediction. A simple coupled ocean-
atmosphere model for ENSO is adopted as an example to
show its applicability. In the case of climatological mean
state being the basic state, it is shown that CNOP tends to
evolve into El Nĩno or La Nĩna event more probably than lin-
ear singular vector (LSV) on the condition that CNOP and
LSV are of the same magnitude of norm. CNOP is also em-
ployed to study the prediction error of El Niño and La Nĩna
events. Comparisons between CNOP and LSV demonstrate
that CNOP is more applicable in studying the predictability
of the models governing the nonlinear motions of oceans and
atmospheres.

1 Introduction

Determination of the fastest growing initial perturbations in
numerical weather and climate prediction and in the atmo-
spheric research is of central importance. The linear ap-
proach for finding the fastest growing initial perturbation is
widely adopted in both the theoretical studies and the nu-
merical weather prediction. Usually, it is assumed that the
initial perturbation is sufficiently small such that its evolu-
tion can be governed approximately by the tangent linear
model (TLM) of the nonlinear model. For a discrete TLM,
the forward propagator can be expressed as a matrix, and
computing the linear fastest growing perturbation is reduced
to calculate the linear singular vector (LSV), which corre-
sponds to the maximum singular value of the matrix. LSV
and linear singular value (LSVA) were introduced into me-
teorology by Lorenz (1965) to investigate the predictability
of the atmospheric motion. Buizza and Palmer (1995) uti-
lized LSVs to study the patterns of the atmospheric general
circulations. Recently, this method has been used to find out
the initial condition for optimal growth in a coupled ocean-

Correspondence to:M. Mu (mumu@lasg.iap.ac.cn)

atmosphere model of El Niño-Southern Oscillation (ENSO),
in an attempt to explore error growth and predictability of the
coupled model (Xue and Cane, 1997a, b; Thompson, 1998;
Samelson and Tziperman, 2001). In addition, LSVs are em-
ployed in the ensemble numerical weather prediction. At
the European Center for Medium-Range Weather Forecasts
(ECMWF), LSVs are utilized to construct the initial pertur-
bations for the ensemble forecast, in order to estimate the
probability distribution of the forecast states.

The motions of the atmosphere and ocean are governed
by complicated nonlinear systems. The theory of LSV and
LSVA is established on the basis that the evolution of the ini-
tial perturbation can be described approximately by the lin-
earized version of the nonlinear model. This raises a few
questions concerning the validity of TLM. One is how small
the initial perturbation should be to guarantee the validity of
TLM; another is how to determine the time interval during
which the TLM is valid. There has been a few papers ad-
dressing these concerns, but no satisfying answer has been
given (Lacarra and Talagrand, 1988; Tanguay and Bartello,
1995; Mu et al., 2000). Therefore, for the nonlinear systems
in the numerical weather and climate prediction, it is desir-
able and often necessary to deal with the nonlinear models
themselves rather than their linear approximations. Leading
Lyapunov vector and exponent have also been used to study
predictability problems (Lorenz, 1996). Realizing that when
the initial uncertainty is not very small, the leading Lyapunov
exponent may not be a good measurement of the predictabil-
ity, Aurell et al. (1997) introduced the concept of finite size
Lyapunov exponent, which has been applied by Boffetta et
al. (1998) to study the predictability of the atmosphere. Toth
and Kalnay (1997) also pointed out that breeding method,
which has been used to generate initial perturbations in en-
semble prediction, provides an extension of the concept of
Lyapunov vector into the nonlinear field with finite amplitude
perturbations. Oortwijn and Barkmeijer (1995) and Bark-
meijer (1996) also realized the limitation of TLM and con-
sidered the nonlinear effects by an iterative procedure.

A novel concept of nonlinear singular value (NSVA) and
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nonlinear singular vector (NSV) has been formulated, which
is a natural generalization to the classical LSVA and LSV
(Mu, 2000). The approach of Oortwijn and Barkmeijer
(1995) and Barkmeijer (1996) consists of modifying the lin-
ear approach by a numerical iterative procedure. Hence the
comparison between their results and ones obtained by NSV
can only be made numerically. Since the focus of this pa-
per is not NSV, such comparison is left to the future. Let
U = U(x, t) be the basic state andU0 = U(x, 0) its ini-
tial state. Ifu0(x) is an initial perturbation superposed on
U0, U0 + u0 will evolve into U(x, T ) + u(x, T ) at timeT ,
whereu(x, T ) describes the nonlinear evolution of the initial
perturbationu0(x). The initial perturbationu∗

0 is called the
fastest nonlinear growing perturbation, or the first NSV with
respect to the basic stateU(x, t) in terms of the norm‖ · ‖, if
and only if

I (u∗

0) = max
u0

I (u0), (1)

where

I (u0) =
‖u(T )‖2

‖u0‖
2

.

The square root of Eq. (1), called the first NSVA, is the
largest growth rate of perturbationu(t) at timeT . In addi-
tion to the first NSVA and NSV, we can also define thenth
(n = 1, 2, · · ·) NSVA and NSV (Mu, 2000). Durbiano (2001)
successfully computed the first six NSVs of a shallow water
model.

The two-dimensional quasi-geostrophic model has been
also used to study the NSVA and NSV (Mu and Wang, 2001).
The numerical results demonstrate that for some types of ba-
sic states, there existsu∗

0 such that in the phase space func-
tional I (u0) attains local maximum atu∗

0, which is called
local fastest growing perturbations. But there is no such phe-
nomenon in the case of LSVs and LSVAs due to the absence
of the nonlinearity of the corresponding TLM. The local
fastest growing perturbations usually possess larger norms
comparing to the first NSV, which corresponds to the global
maximum value of functionalI (u0). Although the growth
rates of the local fastest growing perturbations are smaller
than the first NSVA, their nonlinear evolutions at the end of
the time interval are considerably greater than that of the first
NSV in terms of the chosen norm. In this case, the local
fastest growing perturbations could play a more important
role than the global fastest growing perturbation in the study
of the predictability.

It is clear from the results of Mu and Wang (2001) that for
predictability study, we should first find out all local fastest
growing perturbations, then investigate their effects on the
predictability. This is inconvenient in practical application.
Besides, sometimes the local fastest growing perturbation
with a large norm could be physically unreasonable. For in-
stance, in an anomaly model of ENSO system, sea surface
temperature (SST) anomaly usually have an upper bound.
For example, over the period 1900–1999, SST anomaly av-
eraged over Nĩno-3 region is always less than 6◦C. Hence,

the initial perturbation (initial SST anomaly) superposed on
the climatological mean state should be less than this bound.
If one neglects this constraint, the local fastest growing per-
turbations with a large norm arising from a numerical ap-
proach could exceed this bound and become unreasonable
initial SST anomaly.

Finally, when we compute the NSVs and NSVAs, the in-
equality‖u(T )‖ ≤ c‖u0‖ must be satisfied, whereu0 is an
arbitrary initial perturbation,u(T ) is its nonlinear evolution
andc is a constant independent ofu0 (Mu, 2000). However
it is difficult to check this requirement for complicated gov-
erning equations of atmosphere and ocean.

All these weaknesses suggest that we should investigate
the nonlinear optimal perturbation with constrained condi-
tions. This paper is devoted to address this problem.

The paper is organized as follows. In Sect. 2, we present
the concept of conditional nonlinear optimal perturbation.
In Sect. 3 we give a brief description of general-purpose
sequential quadratic programme (SQP) algorithm, which is
used in this paper to compute CNOP. In Sect. 4, a simple
coupled ocean-atmosphere model for ENSO is adopted as an
example to investigate the applications of CNOP. The con-
clusion and discussion are presented in Sect. 5.

2 Conditional nonlinear optimal perturbation

Assume that the model governing the motions of the atmo-
sphere or ocean is as follows:{

∂w
∂t

+ F(w) = 0, in � × [0, T ]

w|t=0 = w0,
(2)

wherew(x, t) = (w1(x, t), w2(x, t), ..., wn(x, t)), F a non-
linear operator, andw0 the initial state,(x, t) ∈ � × [0, T ],
� a domain inRn, andT < +∞, x = (x1, x2, ..., xn), t

the time. To facilitate the following discussion, suppose ini-
tial value problem (2.1) is well-posed andM is the propa-
gator from 0 to timeT . Hence, for fixedT > 0, the solu-
tion w(x, T ) = M(w0)(T ) is well-defined. LetU(x, t) and
U(x, t) + u(x, t) be the solutions of problem (2.1) with ini-
tial valueU0 andU0+u0 respectively, whereu0 is the initial
perturbation. We have

U(T ) = M(U0)(T ), U(T )+u(T ) = M(U0+u0)(T ).(3)

Sou(T ) describes the evolution of the initial perturbationu0.
For a chosen norm‖ · ‖ measuringu, the perturbationu0δ

is called the conditional nonlinear optimal perturbation with
constraint condition‖u0‖ ≤ δ , if and only if

J (u0δ) = max
‖u0‖≤δ

J (u0), (4)

where

J (u0) = ‖M(U0 + u0)(T ) − M(U0)(T )‖. (5)

In the above, the constraint condition is simply expressed as
belonging to a ball with chosen norm. Obviously, we can
also investigate the situations that the perturbations belong
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to other kind of functional set. Furthermore, the constraint
condition could be some physical laws, which the perturba-
tion should satisfy.

In this paper, we adopt a sequential quadratic program-
ming (SQP) solver to compute CNOP, which is described in
Sect. 3.

3 Description of SQP method

After discretization and proper transformation of the objec-
tive function, the nonlinearly constrained optimization prob-
lem considered in this paper can be written in the form

min
x∈Rn

F(x), (6)

subject to

h(x) ≤ 0,

whereh = (h1, h2, · · · , hn)
> is a vector of nonlinear func-

tions. It is assumed that at any pointx the gradient∇F(x) of
the objective function and the JacobianJ(x) =

∂(h1,h2,···,hn)
∂(x1,x2,···,xn)

of constraint function can be computed.
SQP is a class of optimization solvers that can be used

to solve the nonlinear minimization problems with equality
and inequality constraint condition. The SQP algorithm de-
scribed in Powell (1982) is as follows.
Step 0.Set iterationi = 0, a solution guessx0, a Hessian La-
grangian estimateH0

= I , which is the identity matrix, and
an initial given value of Lagrange multiplier,λ0.
Step 1.Evaluate the objective functions and their gradients.

F(xi), h(xi)

∇F(xi),∇h(xi)

Step 2.Computed i by the following quadratic programme
(QP) sub-problem,

min
d

([∇F(xi)]>d i
+

1

2
(d i>Hid i),

subject to

h(xi) + [∇h(xi)]>d i
≤ 0,

whered i is a direction of descent for the objective function.
Then usingd i , we determine the Lagrange multiplierλi+1

corresponding to the QP sub-problem (Barclay et al., 1997).
Step 3. Check convergence. Ifxi , λi+1 satisfy
‖∇L(xi, λi+1)‖ ≤ ε, where∇L = ∇F + ∇hλ, andε is
a given positive number to guarantee the convergence, then
xi is the point at which the objectiveF(x) is minimal. Oth-
erwise, letxi+1

= xi
+ αd i , α ≤ 1, and then go to Step

4.
Step 4. Update Hessian Lagrangian. Letsi

= xi+1
− xi ,

andyi
= ∇L(xi+1, λi+1) − ∇L(xi, λi). The new Hessian

Lagrangian,Hi+1, can be obtained by calculating

Hi+1
= Hi

−
Hisisi>Hi>

si>Hisi
+

yiyi>

yi>si
.

Then go to Step 2.

4 Applications of conditional nonlinear optimal pertur-
bations to a simple coupled ocean-atmosphere model
for ENSO

In this section, the CNOP is applied to study the predictabil-
ity of ENSO within the framework of the simple coupled
ocean-atmosphere model of Wang et al. (1999). The ocean
component of this theoretical model is derived from the
model of Zebiak and Cane (1987). The essence of the ocean
component is the nonlinear coupling between the mixed layer
thermodynamics and the upper ocean dynamics. The wind
forcing required by ocean component is described by diag-
nostic equations based on a simplified Lindzen-Nigam model
(Lindzen and Nigam, 1987). By focusing on the equatorially
trapped east-west seesaw structure of the ENSO, this sim-
ple coupled model is formulated using Lorenz (1963) trun-
cation in terms of two first-order nonlinear ordinary differen-
tial equations. The two dimensionless equations describe,
respectively, the time evolution of the anomalous sea sur-
face temperatureTE and the anomalous thermocline depth
hE both in the equatorial eastern Pacific:{

dTE

dt
= a1TE + a2hE +

√
2
3TE(TE − µhE) − 2T 3

E,
dhE

dt
= b(2hE − TE) − h3

E,
(7)

where

a1 = (1T̄z + 1T̄x − αs),

a2 = −µ1T̄x,

b =
2α

p(1−3α2)
.

The coefficientsa1 anda2 involve basic state parameters
1T̄x and 1T̄z, which characterize, respectively, the mean
temperature difference between the east and west and be-
tween the surface and subsurface water. Note that, these ba-
sic state parameters vary with time, reflecting the annual cy-
cle of the basic state.αs is a Newtonian cooling coefficient
for SST anomalies. The coefficientµ measures the effect of
the thermocline displacement on SST.α is the air-sea cou-
pling coefficient.p is a function of meridional length scales.
For more detailed description of the simple coupled model,
the readers are referred to Wang and Fang (1996) and Wang
et al. (1999).

The steady solution (0,0) represents the climatological
mean equilibrium state or an ENSO “transitional” state (in-
cluding annul cycle) in which both SST and the depth of ther-
mocline are normal.

The model is integrated by fourth-order Runge-Kutta
scheme withdt = 0.01, which represents one day. The
Fortran code of SQP adopted is a modified version of
Powell (1982) and can be gotten from Y. Yuan (e-mail:
yyx@lsec.cc.ac.cn).

4.1 Conditional nonlinear optimal perturbation ofO − the
climatological mean equilibrium state

In this paper, the norm‖u0‖ =

√
TE0

2
+ hE0

2 is em-
ployed to measure the perturbationu(t), whereTE0 andhE0



496 M. Mu et al.: Conditional nonlinear optimal perturbation

−0.5 0 0.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

T
E

h E

u
Nδ
(1)(T)

u
Nδ
(2)(T)

u(1)
L

(T)
u(2)

L
(T)

O 

(a) 

A 

A′ 

B 

B′ 

0.05 0.1 0.15 0.2 0.25
1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

δ

θ 
(r

ad
ia

n) θ
Nδ
(1)

θ(1)
Lδ

(b) 

Fig. 1. (a)u(i)
Nδ

(T ) andu(i)
L

(T ), the nonlinear evolutions ofu(i)
0δ

and

u(i)
0L

in the phase space respectively;(b) θ
(1)
Lδ

andθ
(1)
Nδ

, the position

angles ofu(1)
0L

andu(1)
0δ

as functions ofδ, respectively.

represent the initial SST and thermocline depth anomaly, re-
spectively. ForT = 10, 12 months with initial time being
January, we obtained CNOPs of basic stateO with constraint
condition‖u0‖ ≤ δ, δ ∈ [0.01, 0.25] respectively. The re-
sults forT = 10, 12 months are quite similar. For simplic-
ity, we only show that of the case ofT = 12 months. In
this case, there exist two different CNOPs,u(1)

0δ and u(2)
0δ ,

which are all on the boundary of the corresponding disc
‖u0‖ ≤ δ, δ ∈ [0.01, 0.25]. Let θ

(i)
Nδ, i = 1, 2, be the po-

sition angles of the two CNOPs, which is the one between
the CNOP and the positiveTE-axis in the planeTE − hE

and represents the direction of the vectoru(i)
0δ . Then the two

CNOPs can be expressed asu(1)
0δ =(δ cosθ (1)

Nδ , δ sinθ
(1)
Nδ ) and

u(2)
0δ = (δ cosθ (2)

Nδ , δ sinθ
(2)
Nδ ) respectively, whereδ is the mag-

nitude of initial perturbation. Forδ = 0.20, the two CNOPs
are (-0.0498, 0.1937) and (0.0295, -0.1978) and located in
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with T = 12 months respectively;(b) J (u0) for ran-

dom initial perturbations in disk‖u0‖ ≤ 0.20,J (u(1)
0δ

) andJ (u(2)
0δ

).

II and IV-Quadrant respectively. To further investigate the
difference between the two CNOPs, we integrate the model
with initial valuesu(1)

0δ andu(2)
0δ for eachδ ∈ [0.01, 0.25] and

obtain their nonlinear developments,u(1)
Nδ(T ) and u(2)

Nδ(T )

for T = 12 months. The results are plotted in Fig. 1a. It
is readily shown that withδ increasing from 0.01 to 0.25,
u(1)

Nδ(T ) (u(2)
Nδ(T )) departs from the neighborhood ofO and

the two different CNOPs evolve into the patterns located in I-
Quadrant and III-Quadrant in the planeTE −hE respectively.

To compare CNOP with LSV, we further investigate the
nonlinear evolution and the directions of LSV.u0L =

(−0.0573, 0.0819) is a LSV of the basic stateO and located
in II-Quadrant. To facilitate the following discussion, we de-
fine two scaled LSVs,

u(1)
0L =

‖u(1)
0δ ‖

‖u0L‖
u0L, u(2)

0L = −
‖u(2)

0δ ‖

‖u0L‖
u0L,
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thus

‖u(1)
0L‖ = ‖u(1)

0δ ‖ = δ, ‖u(2)
0L‖ = ‖u(2)

0δ ‖ = δ.

Integrating the nonlinear model withu(1)
0L and u(2)

0L being

initial values, we obtain the evolutions,u(i)
L (T ), for each

δ ∈ [0.01, 0.25] respectively. The results are also plotted
in Fig.1a, whereA andA′ correspond to the nonlinear evo-
lutions of u(1)

0δ andu(1)
0L with δ = 0.2, B andB ′ to the ones

of u(2)
0δ andu(2)

0L with δ = 0.2 respectively. It is easily shown
that for the same value ofδ, when it is large, for example,
δ = 0.2, u(1)

Nδ(T ) (u(2)
Nδ(T )) is quite different fromu(1)

L (T )

(u(2)
L (T )). And with δ increasing from 0.01 to 0.25, the dif-

ferences become more and more considerable. Besides,u(i)
0L

can also be expressed as(δ cosθ (i)
Lδ , δ sinθ

(i)
Lδ ), whereθ (i)

Lδ , en-
titled position angle in this paper, is the one between LSV
and the positiveTE-axis in the planeTE − hE and represents
the direction of the LSVu(i)

0L. The position angles of CNOP

u
(1)
0δ and LSVu

(1)
0L are shown in Fig. 1b. It is demonstrated

that the direction of LSV does not change withδ, but those
of CNOPs do. This indicates that LSV represents the optimal
growing direction due to the linearity of tangent linear model
(Mu and Wang, 2001), but CNOP stands for initial pattern,
whose nonlinear evolution is maximal at timeT . Figure 2a
are the nonlinear and linear evolutions ofu(1)

0δ . It follows that
there are remarkable differences between them for large per-
turbations. However, when the initial perturbations are suffi-
ciently small, the difference becomes trivial. Meanwhile, the
CNOP tends gradually to the LSV (Fig. 1b). This demon-
strates that for large initial perturbations, the tangent linear
model is not a good approximation to the nonlinear model.

To verify the correctness of our optimization algorithm,
for u(1)

0δ andu(2)
0δ with δ = 0.20, a large random samples of

initial perturbations in the disk‖u0‖ ≤ 0.20, are chosen to
find out the maximum value of functionalJ (u0) (Fig. 2b).
It is clear from Fig. 2b that the value ofJ (u0) with other
random perturbations in the disk‖u0‖ ≤ 0.20 is always less
than J (u(i)

0δ ), i = 1, 2. This verifies that the CNOPs for
δ = 0.20 are indeed the nonlinear optimal perturbations with
constraint condition‖u0‖ ≤ 0.20. For the other values ofδ,
δ ∈ [0.01, 0.25], the results are similar to that ofδ = 0.20.
For simplicity, only the case ofδ = 0.20 is shown. These
indicate that SQP algorithm adopted in this paper can solve
efficiently the optimization problem Eq. (4).

The CNOPs of basic stateO are the initial perturbations
superposed on the climatological mean state, which represent
the initial anomalies(TE, hE). In this model, ifTE ≥ 0.25
(TE ≤ −0.25) persists for more than three months, it is re-
garded as an El Niño (La Niña) event. Letu(i)

Nδ(t) be the

evolution of u(i)
0δ , we plot in Fig. 3 theTE component of

it. According to this standard, forT = 12 months, when
δ ≥ 0.10 (δ ≥ 0.12), the CNOPu(1)

0δ (u(2)
0δ ) of the basic state

O will evolve into El Niño (La Niña) event (Fig. 3). Then
what about the evolution of LSV?
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Taking the scaled LSVs,u(1)
0L with δ = 0.10 andu(2)

0L with
δ = 0.12, as initial values, integrating the nonlinear model
respectively, we obtain the evolutions ofu(i)

L (t), of which the
TE component are shown in Fig. 3 too. The results demon-
strate thatu(1)

0L with δ = 0.10 (u(2)
0L with δ = 0.12) does not

evolve into El Nĩno (La Niña) event. In the prediction and
research of ENSO, it is important to find out the initial pat-
terns which will evolve into El Nĩno or La Nĩna event most
probably (Thompson, 1998). Our results suggest that CNOP
is more applicable than LSV for this purpose.

In the following subsections, we investigate the CNOPs of
an El Niño and a La Nĩna events and their applications to the
estimation of prediction error of El Niño and La Nĩna events.

4.2 Estimation of prediction errors of El Niño and La Nĩna
events,U(1)(t) andU(2)(t)

In this subsection, the basic statesU(1)(t) and U(2)(t)

are the El Nĩno and La Nĩna events, which are obtained
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by integrating nonlinear model with initial valuesu(1)
0δ =

(−0.0498, 0.1937) and u(2)
0δ = (0.0295, −0.1978) respec-

tively, which are the two CNOPs of the climatological mean
state withδ = 0.20 andT = 12 months obtained in last
subsection (Fig. 4).

Assume that the initial values of the basic states,u(1)
0δ and

u(2)
0δ , are taken as initial observations, then the CNOPs of

U(1)(t) andU(2)(t) are closely related to the problem of the
maximum prediction error. We will explain it in detail. Mu et
al. (2002) classified the predictability problems in numerical
weather and climate prediction into three problems, which
are, respectively, the maximum predictable time, the maxi-
mum prediction error, and the maximum admissible errors
of the initial values and the parameters in the model. Sup-
pose thatM is the propagator from time 0 toT , U0 the initial
observation, the prediction error is

E = ‖M(U0)(T ) − U t
T ‖,

whereU t
T is the true value of the state at timeT . Since the

true valueU t
T can not be obtained exactly, it is impossible
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Fig. 5. (a)‖u(1)
Nδ

(T )‖ and‖u(1)
Lδ

(T )‖, the nonlinear and linear evo-

lution of CNOP ofU(1)(t) for T = 10 months andδ ∈ [0.01, 0.14];
(b) θ

(1)
Nδ

andθ
(1)
Lδ

, the position angles of LSV and CNOP ofU(1) as
functions ofδ, respectively.

to get the exact value ofE. But Mu et al. (2002) pointed
out that if some information about the errors of the initial
observation is known, e.g., if we know that the observation
error in terms of norm‖ · ‖ is less thanδ, we can estimate
the prediction error by considering the following nonlinear
optimization problem

Eu = max
‖u0‖≤δ

‖M(U0 + u0)(T ) − M(U0)(T )‖.

Mu et al. (2002) proved thatEu is the upper bound of the
prediction error, that is,E ≤ Eu. The conditional nonlinear
optimal perturbationu0δ obtained from the Sect. 2 satisfies

Eu = ‖M(U0 + u0δ)(T ) − M(U0)(T )‖.

Therefore, the CNOP andJ (u0δ) give an upper bound of the
prediction error caused by the initial observational errors.
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4.2.1 Estimation of prediction error of an El Niño event
U(1)(t)

The basic state,U(1)(t), is an El Nĩno event (Fig. 4) in
this model. ForT = 10 months, we obtain the CNOP of
U(1)(t) and the corresponding nonlinear evolution, which, as
we have mentioned, gives an upper bound for the prediction
error. It is found that, for constraint condition‖u0‖ ≤ δ,
δ ∈ [0.01, 0.14], there exists a CNOP ofU(1)(t), which is
on the boundary of disc‖u0‖ ≤ δ, δ ∈ [0.01, 0.14]. Since
U(1)(0) is not the origin of the coordinate system, to define
the position angle of CNOP on the planeTE − hE , we adopt
a polar coordinate system, whose pole isU(1)(0), and polar
axis is parallel to the positiveTE-axis. Denote the position
angle of the CNOP byθ (1)

Nδ , this CNOP can be expressed as

(δ cosθ (1)
Nδ , δ sinθ

(1)
Nδ ), where the position angle is the one be-

tween CNOP and the polar axis. Similar to the case of basic
stateO, for the basic stateU(1)(t), there are also notable dif-
ferences between the nonlinear and the linear evolution of
CNOP, and between the position angles of CNOPs and those
of LSVs. The details are shown in Fig. 5.

For T = 12 months, there also exists a CNOP
(δ cosθ (1)

Nδ , δ sinθ
(1)
Nδ ). The difference between the CNOP and

the LSV are similar to the case ofT = 10 months. For sim-
plicity, we do not show the results here.

4.2.2 Estimation of prediction error of a La Niña eventU(2)

Similar to the case of the El Niño U(1)(t), we compute
the CNOPs of a La Niña eventU(2)(t) (Fig. 4), and com-
pare them to the linear singular vectors of the correspond-
ing tangent linear model. It is found that, forδ ∈

[0.01, 0.14] andT = 10, 12 months, there exists a CNOP
(δ cosθ (2)

Nδ , δ sinθ
(2)
Nδ ), respectively. Figure 6 shows the dif-

ferences between the nonlinear and linear evolution, and be-
tween the position angles of CNOPs and those of LSVs for
T = 12 months. It follows that there is no significant differ-
ence when the initial perturbations are sufficient small. But
with δ increasing from 0.01 to 0.14, the difference becomes
more and more distinguishable. Similarly, the position an-
gles of LSV and CNOP ofU(2)(t) have considerable dif-
ferences. All these suggest that in these cases the TLM is
not a good approximation to the original nonlinear model. If
TLM is used to estimate the error growth, the prediction er-
ror could be overestimated or underestimated, which yields
uncertainty in the assessment of forecast skill. The usage of
CNOP in the research of predictability is expected to provide
improved results.

5 Conclusion and discussion

In this paper, we used a simple theoretical coupled ocean-
atmosphere model to demonstrate the concept of conditional
nonlinear optimal perturbation (CNOP) and its application to
study predictability problems of El Niño and La Nĩna events.
It is shown that CNOP is more applicable than LSV in de-
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(T )‖, the nonlinear and linear evo-

lution of CNOP ofU(2)(t) for T = 12 months andδ ∈ [0.01, 0.14];
(b) θ

(2)
Nδ

andθ
(2)
Lδ

, the position angles of LSV and CNOP ofU(2) as
functions ofδ, respectively.

termining the initial patterns that will evolve into El Niño or
La Niña events most probably. In the case of estimation of
prediction error, comparisons between CNOP and linear sin-
gular vector (LSV) suggest that CNOP be also a better tool
than LSV.

There is an essential difference between LSV and CNOP.
LSV represents the optimal growing direction of the initial
perturbations in the TLM, CNOP stands for a kind of initial
patterns, whose amplitude of the nonlinear evolution is max-
imal with the constraint condition at timeT . Hence CNOP
does represent the effects of model’s nonlinearity. The phys-
ical explanation of CNOPs, and related observational data
analysis are the works of the scientists in the future.

Although the model (Eq. 7) is a simple theoretical one,
the characteristic of the nonlinearity of air-sea interaction is
grasped, the nonlinear characteristic of the model is revealed
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from the aspects of the initial perturbation pattern and its
corresponding nonlinear evolution by using the CNOP ap-
proach. It is reasonable to reckon that for more complicated
nonlinear models governing the motions of the atmosphere
and/or oceans, the results from CNOP approach could be sig-
nificantly different from those from LSV approach. This in-
dicates that it is worthwhile to survey the reliability of results
obtained from the linear approach. The results of this study
suggest that CNOP approach be one of useful tools in the
study of nonlinear motions of atmosphere and oceans.

In this paper, we only calculate CNOP of two dimen-
sional ordinary differential equations. Concerning the cal-
culations of CNOP with high dimensional system, compu-
tational cost is of importance. For two-dimensional quasi-
geostrophic model with freedom of 103, we have succeeded
in obtaining CNOP by SQP method. The success of gain-
ing CNOP numerically depends mostly on the optimization
algorithm. If the algorithm is capable of obtaining a mini-
mum, it is hopeful to get CNOP by this algorithm. Some-
times, parallel algorithm is a useful tool to capture the global
minimum, considering that there exist multi-CPU comput-
ers. In operational 4-dimensional variational data assimila-
tion (4-D-VAR) and ensemble forecast, computational cost,
particularly the computer time, is of importance. But if we
only consider the applications of CNOP to the research of
predictability, the computer time is the secondary considera-
tion.

For more complicated models employed in the numeri-
cal weather and climate prediction, the involved optimization
problems could be difficult. The models are often of high di-
mensions, and the constraint conditions on physical variables
or the observation errors can be complex. In some cases,
the problems are non-smooth one too. To obtain CNOP of
these models, we have to solve the optimization problems
with complicated constraint conditions and with high dimen-
sions. To overcome these difficulties, the collaborations be-
tween computational mathematicians and atmospheric and
oceanic scientists are necessary. Nevertheless these difficul-
ties are not the reason for stopping our investigation. Consid-
ering that operational 4-D-VAR has been successful imple-
mental at the European Center for Medium-Range Weather
Forecasts (ECMWF), which solve an optimization problem
of dimension 106−107, we are encouraged to expect that the
rapid development of computational mathematics and com-
puter will enable us to achieve our purpose step by step.
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