100 research outputs found

    The Dog Mite, Demodex canis: Prevalence, Fungal Co-Infection, Reactions to Light, and Hair Follicle Apoptosis

    Get PDF
    Infection rate, reaction to light, and hair follicle apoptosis are examined in the dogmite, Demodex canis Leydig (Prostigmata: Demodicidae), in dogs from the northern area of Taiwan. An analysis of relevant samples revealed 7.2% (73/1013) prevalence of D. canis infection. Infection during the investigation peaked each winter, with an average prevalence of 12.5% (32/255). The infection rates significantly varied in accordance with month, sex, age, and breed (p < 0.05). Most of the lesions were discovered on the backs of the infected animals, where the infection rate was 52.1% (38/73) (P < 0.05). The epidemiologic analysis of infection based on landscape area factor, found that employing a map-overlapping method showed a higher infection rate in the eastern distribution of Taiwan's northern area than other areas. Isolation tests for Microsporum canis Bodin (Onygenales: Arthrodermataceae) and Trichophyton mentagrophyte Robin (Blanchard) on the D. canis infected dogs revealed prevalence rates of 4.4% (2/45) and 2.2% (1/45), respectively. Observations demonstrated that D. canis slowly moved from a light area to a dark area. Skin samples were examined for cellular apoptosis by activated caspase3 immunohistochemical staining. Cells that surrounded the infected hair follicles were activated caspase3-positive, revealing cell apoptosis in infected follicles via the activation of caspase3

    The Composition of the Cuticular and Internal Free Fatty Acids and Alcohols from Lucilia sericata Males and Females

    Get PDF
    GC, GC–MS, and HPLC–LLSD analyses were used to identify and quantify cuticular and internal lipids in males and females of the blow-fly (Lucilia sericata). Sixteen free fatty acids, seven alcohols and cholesterol were identified and quantitatively determined in the cuticular lipids of L. sericata. Cuticular fatty acids ranged from C6 to C20 and included unsaturated entities such as 16:1n-9, 18:1n-9, 20:4n-3 and 20:5n-3. Cuticular alcohols (only saturated and even-numbered) ranged from C12 to C20 in males and C10 to C22 in females. Only one sterol was found in the cuticular lipids of both males and females. 23 free fatty acids, five alcohols and cholesterol were identified in the internal lipids. Internal fatty acids were present in large amounts—7.4 mg/g (female) and 10.1 mg/g (male). Only traces of internal alcohols (from C14 to C26 in males, from C14 to C22 in females) were found in L. sericata. Large amounts of internal cholesterol were identified in L. sericata males and females (0.49 and 0.97 mg/g of the insect body, respectively)

    Potential impact of prickly pear cactus flour and Salix babylonica extract on cecal fermentation and methane production in horses

    Get PDF
    The cecal gas (GP) and methane (CH4) production and cecal fermentation kinetics when corn grain (CG) was replaced with prickly cactus (PC) in a horse’s diet at different levels of Salix babylonica (SB) extract was investigated. Three total mixed rations where CG was replaced with PC at three levels (/kg): 0 g (Control), 75 g (PC75) or 150 g (PC150) were prepared and SB extract added at four levels: 0, 0.6, 1.2 and 1.8 mL/g dry matter (DM) of substrates. No ration type 9 SB extract dose interaction was observed (P [0.05) for GP kinetics and CH4 production. Increasing the level of PC in the ration quadratically increased (P \0.01) the asymptotic GP and decreased (P\0.01) the rate and lag time of GP. Increasing the level of PC in the ration, increased GP values (P\0.05). Increasing the level of SB extract linearly decreased (P = 0.001) the lag time of GP of all diets without affecting the asymptotic GP or the rate of GP. Ration type and SB level had no effect (P [0.05) on CH4 production; however, at 36 h of incubation, SB extract decreased CH4 production. The rations PC75 and PC150 increased cecal pH compared with the control ration. The PC150 ration had the highest (P\0.05) DM degradability, short chain fatty acids production, and gas yield after 24 h of incubation, with no effect (P[0.05) of SB inclusion on all investigated fermentation kinetic parameters. It is concluded that increasing the level of PC in the diet of horse and replacing CG up to 60%, increased GP and improved cecal fermentation kinetics without affecting CH4 production. Inclusion of S. babylonica extract in the tested rations had weak effects on fermentation kinetics although it decreased the lag time of GP

    Genetic Diversity, Morphological Uniformity and Polyketide Production in Dinoflagellates (Amphidinium, Dinoflagellata)

    Get PDF
    Dinoflagellates are an intriguing group of eukaryotes, showing many unusual morphological and genetic features. Some groups of dinoflagellates are morphologically highly uniform, despite indications of genetic diversity. The species Amphidinium carterae is abundant and cosmopolitan in marine environments, grows easily in culture, and has therefore been used as a ‘model’ dinoflagellate in research into dinoflagellate genetics, polyketide production and photosynthesis. We have investigated the diversity of ‘cryptic’ species of Amphidinium that are morphologically similar to A. carterae, including the very similar species Amphidinium massartii, based on light and electron microscopy, two nuclear gene regions (LSU rDNA and ITS rDNA) and one mitochondrial gene region (cytochrome b). We found that six genetically distinct cryptic species (clades) exist within the species A. massartii and four within A. carterae, and that these clades differ from one another in molecular sequences at levels comparable to other dinoflagellate species, genera or even families. Using primers based on an alignment of alveolate ketosynthase sequences, we isolated partial ketosynthase genes from several Amphidinium species. We compared these genes to known dinoflagellate ketosynthase genes and investigated the evolution and diversity of the strains of Amphidinium that produce them

    LeishVet update and recommendations on feline leishmaniosis

    Get PDF
    Limited data is available on feline leishmaniosis (FeL) caused by Leishmania infantum worldwide. The LeishVet group presents in this report a review of the current knowledge on FeL, the epidemiological role of the cat in L. infantum infection, clinical manifestations, and recommendations on diagnosis, treatment and monitoring, prognosis and prevention of infection, in order to standardize the management of this disease in cats. The consensus of opinions and recommendations was formulated by combining a comprehensive review of evidence-based studies and case reports, clinical experience and critical consensus discussions. While subclinical feline infections are common in areas endemic for canine leishmaniosis, clinical illness due to L. infantum in cats is rare. The prevalence rates of feline infection with L. infantum in serological or molecular-based surveys range from 0 % to more than 60 %. Cats are able to infect sand flies and, therefore, they may act as a secondary reservoir, with dogs being the primary natural reservoir. The most common clinical signs and clinicopathological abnormalities compatible with FeL include lymph node enlargement and skin lesions such as ulcerative, exfoliative, crusting or nodular dermatitis (mainly on the head or distal limbs), ocular lesions (mainly uveitis), feline chronic gingivostomatitis syndrome, mucocutaneous ulcerative or nodular lesions, hypergammaglobulinaemia and mild normocytic normochromic anaemia. Clinical illness is frequently associated with impaired immunocompetence, as in case of retroviral coinfections or immunosuppressive therapy. Diagnosis is based on serology, polymerase chain reaction (PCR), cytology, histology, immunohistochemistry (IHC) or culture. If serological testing is negative or low positive in a cat with clinical signs compatible with FeL, the diagnosis of leishmaniosis should not be excluded and additional diagnostic methods (cytology, histology with IHC, PCR, culture) should be employed. The most common treatment used is allopurinol. Meglumine antimoniate has been administered in very few reported cases. Both drugs are administered alone and most cats recover clinically after therapy. Follow-up of treated cats with routine laboratory tests, serology and PCR is essential for prevention of clinical relapses. Specific preventative measures for this infection in cats are currently not available
    corecore