2,255 research outputs found

    Phytoplankton and Nutrient Dynamics in a Tidally Dominated Eutrophic Estuary: Daily Variability and Controls on Bloom Formation

    Get PDF
    To better understand nutrient dynamics and factors that promote the initiation of algal blooms, the Lafayette River, a tidal subestuary of Chesapeake Bay that experiences seasonal algal blooms, was sampled daily for a period of 54 d in the fall of 2005. Three phytoplankton blooms (chl a concentrations exceeding twice the average of monthly measurements from 2000 to 2009) occurred during this period: a mixed bloom of Akashiwo sanguinea and Gymnodinium sp., a monospecific Skeletonema costatum bloom, and a monospecific Gymnodinium sp. bloom. Over the sampling period, nutrient concentrations increased following precipitation events and were elevated between bloom periods but low during blooms. All measured forms of nitrogen (N) were positively correlated with dinoflagellate abundance with a lag time of 3 to 5 d, suggesting a possible triggering effect, although not by any single form of N. Concentrations of NO2--reached 10 µM between September and October, indicative of incomplete nitrification. Over a 24 h period, nutrient concentrations and chl a biomass varied by an order of magnitude (0.1 to 1 µM N and 4.5 to 45 µg chl a l-1, respectively) and were strongly linked to the tidal phase. In the highly eutrophic Lafayette River, when nutrient concentrations are high, phytoplankton blooms appear to be controlled by spring-neap tidal modulation and wind-driven mixing; however, picoplankton abundance does not appear to be linked to the spring-neap tidal cycle

    Blooms of Dinoflagellate Mixotrophs in a Lower Chesapeake Bay Tributary: Carbon and Nitrogen Uptake over Diurnal, Seasonal, and Interannual Timescales

    Get PDF
    A multi-year study was conducted in the eutrophic Lafayette River, a sub-tributary of the lower Chesapeake Bay during which uptake of inorganic and organic nitrogen (N) and C compounds was measured during multiple seasons and years when different dinoflagellate species were dominant. Seasonal dinoflagellate blooms included a variety of mixotrophic dinoflagellates including Heterocapsa triquetra in the late winter, Prorocentrum minimum in the spring, Akashiwo sanguinea in the early summer, and Scrippsiella trochoidea and Cochlodinium polykrikoides in late summer and fall. Results showed that no single N source fueled algal growth, rather rates of N and C uptake varied on seasonal and diurnal timescales, and within blooms as they initiated and developed. Rates of photosynthetic C uptake were low yielding low assimilation numbers during much of the study period and the ability to assimilate dissolved organic carbon augmented photosynthetic C uptake during bloom and non-bloom periods. The ability to use dissolved organic C during the day and night may allow mixotrophic bloom organisms a competitive advantage over co-occurring phytoplankton that are restricted to photoautotrophic growth, obtaining N and C during the day and in well-lit surface waters

    Bone mineral density reductions after tenofovir disoproxil fumarate initiation and changes in phosphaturia: a secondary analysis of ACTG A5224s

    Get PDF
    Background: It is unknown if the greater reductions in bone mineral density (BMD) associated with initiation of tenofovir disoproxil fumarate compared with abacavir in previously untreated HIV-infected participants in the ACTG A5224s clinical trial were associated with potentially worsening tenofovir-related phosphaturia. Methods: We correlated changes in BMD at the hip and spine with changes in phosphaturia [transtubular reabsorption of phosphorus (TRP) and tubular maximum phosphate reabsorption per glomerular filtration rate (TmP/GFR)] from entry through week 96 in those initiating tenofovir ( n  =   134) versus abacavir ( n  =   135) with efavirenz or atazanavir/ritonavir in A5224s. We also correlated changes in BMD with tenofovir AUC measured between weeks 4 and 24. Results: Changes in TRP and TmP/GFR through week 96 between the tenofovir and abacavir arms were not significantly different (both P  ≥   0.70) and did not differ with use of efavirenz versus atazanavir/ritonavir. There were no significant correlations between changes in either TRP or TmP/GFR and with either hip or spine BMD in the tenofovir arms. Tenofovir AUC was significantly correlated with changes in hip BMD, but not spine BMD, at week 24 ( r  =   -0.22, P  =   0.028) and week 48 ( r  =   -0.26, P  =   0.010), but not at week 96 ( r  =   -0.14, P  =   0.18). Conclusions: Changes in phosphaturia were not different between the tenofovir and abacavir arms in A5224s. Changes in hip and spine BMD with tenofovir were not related to changes in phosphaturia. However, tenofovir exposure was weakly associated with changes in hip BMD through week 48

    L-VRAP-a lunar volatile resources analysis package for lunar exploration

    Get PDF
    The Lunar Volatile Resources Analysis Package (L-VRAP) has been conceived to deliver some of the objectives of the proposed Lunar Lander mission currently being studied by the European Space Agency. The purpose of the mission is to demonstrate and develop capability; the impetus is very much driven by a desire to lay the foundations for future human exploration of the Moon. Thus, LVRAP has design goals that consider lunar volatiles from the perspective of both their innate scientific interest and also their potential for in situ utilisation as a resource. The device is a dual mass spectrometer system and is capable of meeting the requirements of the mission with respect to detection, quantification and characterisation of volatiles. Through the use of appropriate sampling techniques, volatiles from either the regolith or atmosphere (exosphere) can be analysed. Furthermore, since L-VRAP has the capacity to determine isotopic compositions, it should be possible for the instrument to determine the sources of the volatiles that are found on the Moon (be they lunar per se, extra-lunar, or contaminants imparted by the mission itself

    Structure of a putative NTP pyrophosphohydrolase: YP_001813558.1 from Exiguobacterium sibiricum 255-15.

    Get PDF
    The crystal structure of a putative NTPase, YP_001813558.1 from Exiguobacterium sibiricum 255-15 (PF09934, DUF2166) was determined to 1.78 Å resolution. YP_001813558.1 and its homologs (dimeric dUTPases, MazG proteins and HisE-encoded phosphoribosyl ATP pyrophosphohydrolases) form a superfamily of all-α-helical NTP pyrophosphatases. In dimeric dUTPase-like proteins, a central four-helix bundle forms the active site. However, in YP_001813558.1, an unexpected intertwined swapping of two of the helices that compose the conserved helix bundle results in a `linked dimer' that has not previously been observed for this family. Interestingly, despite this novel mode of dimerization, the metal-binding site for divalent cations, such as magnesium, that are essential for NTPase activity is still conserved. Furthermore, the active-site residues that are involved in sugar binding of the NTPs are also conserved when compared with other α-helical NTPases, but those that recognize the nucleotide bases are not conserved, suggesting a different substrate specificity

    Effect of scavenger receptor BI antagonist ITX5061 in patients with hepatitis C virus infection undergoing liver transplantation

    Get PDF
    Hepatitis C virus (HCV) entry inhibitors have been hypothesized to prevent infection of the liver after transplantation. ITX5061 is a Scavenger Receptor B-I (SR-BI) antagonist that blocks HCV entry and infection in vitro. We assessed the safety and efficacy of ITX5061 to limit HCV infection of the graft. The study included 23 HCV infected patients undergoing liver transplantation. The first 13 "control" patients did not receive drug. The subsequent 10 patients received ITX5061 150 mg immediately pre- and post-transplant, and daily for 1 week thereafter. ITX5061 pharmacokinetics and plasma HCV RNA were quantified. Viral genetic diversity was measured by ultradeep pyrosequencing. ITX5061 was well tolerated with measurable plasma concentrations during therapy. Whilst the median HCV RNA reduction was greater in ITX treated patients at all time points in the first week after transplantation there was no difference in the overall change in the area over the HCV RNA curve in the 7-day treatment period. However, in genotype 1 infected patients treatment was associated with a sustained reduction in HCV RNA levels compared to the control group (area over the HCV RNA curve analysis, p=0.004). Ultradeep pyrosequencing revealed a complex and evolving pattern of HCV variants infecting the graft during the first week. ITX5061 significantly limited viral evolution where the median divergence between day 0 and day 7 was 3.5% in the control group compared to 0.1% in the treated group.CONCLUSIONS: ITX5061 reduces plasma HCV RNA post transplant notably in genotype 1 infected patients and slows viral evolution. Following liver transplantation the likely contribution of extrahepatic reservoirs of HCV necessitates combining entry inhibitors such as ITX5061 with inhibitors of replication in future studies. Clinicaltrials.gov NCT01292824. This article is protected by copyright. All rights reserved.</p

    Application of multi-criteria decision analysis techniques and decision support framework for informing plant select agent designation and decision making

    Get PDF
    The United States Department of Agriculture (USDA) Division of Agricultural Select Agents and Toxins (DASAT) established a list of biological agents (Select Agents List) that threaten crops of economic importance to the United States and regulates the procedures governing containment, incident response, and the security of entities working with them. Every 2 years the USDA DASAT reviews their select agent list, utilizing assessments by subject matter experts (SMEs) to rank the agents. We explored the applicability of multi-criteria decision analysis (MCDA) techniques and a decision support framework (DSF) to support the USDA DASAT biennial review process. The evaluation includes both current and non-select agents to provide a robust assessment. We initially conducted a literature review of 16 pathogens against 9 criteria for assessing plant health and bioterrorism risk and documented the findings to support this analysis. Technical review of published data and associated scoring recommendations by pathogen-specific SMEs was found to be critical for ensuring accuracy. Scoring criteria were adopted to ensure consistency. The MCDA supported the expectation that select agents would rank high on the relative risk scale when considering the agricultural consequences of a bioterrorism attack; however, application of analytical thresholds as a basis for designating select agents led to some exceptions to current designations. A second analytical approach used agent-specific data to designate key criteria in a DSF logic tree format to identify pathogens of low concern that can be ruled out for further consideration as select agents. Both the MCDA and DSF approaches arrived at similar conclusions, suggesting the value of employing the two analytical approaches to add robustness for decision making

    Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease

    Get PDF
    The worldwide burden of sickle cell disease is enormous, with over 200,000 infants born with the disease each year in Africa alone. Induction of fetal hemoglobin is a validated strategy to improve symptoms and complications of this disease. The development of targeted therapies has been limited by the absence of discrete druggable targets. We developed a unique bead-based strategy for the identification of inducers of fetal hemoglobin transcripts in primary human erythroid cells. A small-molecule screen of bioactive compounds identified remarkable class-associated activity among histone deacetylase (HDAC) inhibitors. Using a chemical genetic strategy combining focused libraries of biased chemical probes and reverse genetics by RNA interference, we have identified HDAC1 and HDAC2 as molecular targets mediating fetal hemoglobin induction. Our findings suggest the potential of isoform-selective inhibitors of HDAC1 and HDAC2 for the treatment of sickle cell disease
    corecore