3,976 research outputs found

    Airborne Radar for sUAS Sense and Avoid

    Get PDF
    A primary challenge for the safe integration of small UAS operations into the National Airspace System (NAS) is traffic deconfliction, both from manned and unmanned aircraft. The UAS Traffic Management (UTM) project being conducted at the National Aeronautics and Space Administration (NASA) considers a layered approach to separation provision, ranging from segregation of operations through airspace volumes (geofences) to autonomous sense and avoid (SAA) technologies for higher risk, densely occupied airspace. Cooperative SAA systems, such as Automatic Dependent Surveillance-Broadcast (ADS-B) and/or vehicle-to-vehicle communication systems provide significant additional risk mitigation but they fail to adequately mitigate collision risks for non-cooperative (non-transponder equipped) airborne aircraft. The RAAVIN (Radar on Autonomous Aircraft to Verify ICAROUS Navigation) flight test being conducted by NASA and the Mid-Atlantic Aviation Partnership (MAAP) was designed to investigate the applicability and performance of a prototype, commercially available sUAS radar to detect and track non-cooperative airborne traffic, both manned and unmanned. The radar selected for this research was a Frequency Modulated Continuous Wave (FMCW) radar with 120 degree azimuth and 80 degree elevation field of view operating at 24.55GHz center frequency with a 200 MHz bandwidth. The radar transmits 2 watts of power thru a Metamaterial Electronically Scanning Array antenna in horizontal polarization. When the radar is transmitting, personnel must be at least 1 meter away from the active array to limit nonionizing radiation exposure. The radar physical dimensions are 18.7cm by 12.1cm by 4.1cm and it weighs less than 820 grams making it well suited for installation on small UASs. The onboard, SAA capability, known as ICAROUS, (Independent Configurable Architecture for Reliable Operations of Unmanned Systems), developed by NASA to support sUAS operations, will provide autonomous guidance using the traffic radar tracks from the onboard radar. The RAAVIN set of studies will be conducted in three phases. The first phase included outdoor, ground-based radar evaluations performed at the Virginia Techs Kentland Farm testing range in Blacksburg, VA. The test was designed to measure how well the radar could detect and track a small UAS flying in the radars field of view. The radar was used to monitor 5 test flights consisting of outbound, inbound and crossing routes at different ranges and altitudes. The UAS flown during the ground test was the Inspire 2, a quad copter weighing less than 4250 grams (10 pounds) at maximum payload. The radar was set up to scan and track targets over its full azimuthal field of view from 0 to 40 degrees in elevation. The radar was configured to eliminate tracks generated from any targets located beyond 2000 meters from the radar and moving at velocities under 1.45 meters per second. For subsequent phases of the study the radar will be integrated with a sUAS platform to evaluate its performance in flight for SAA applications ranging from sUAS to manned GA aircraft detections and tracking. Preliminary data analysis from the first outdoor ground tests showed the radar performed well at tracking the vehicle as it flew outbound and repeatedly maintained a track out to 1000 meters (maximum 1387 meters) until the vehicle slowed to a stop to reverse direction to fly inbound. As the Inspire flew inbound tracks from beyond 800 meters, a reacquisition time delay was consistently observed between when the Inspire exceeds a speed of 1.45 meters per second and when the radar indicated an inbound target was present and maintained its track. The time delay varied between 6 seconds to over 37 seconds for the inbound flights examined, and typically resulted in about a 200 meter closure distance before the Inspire track was maintained. The radar performed well at both acquiring and tracking the vehicle as it flew crossing routes out past 400 meters across the azimuthal field of view. The radar and ICAROUS software will be integrated and flown on a BFD-1400-SE8-E UAS during the next phase of the RAAVIN project. The main goal at the conclusion of this effort is to determine if this radar technology can reliably support minimum requirements for SAA applications of sUAS. In particular, the study will measure the range of vehicle detections, lateral and vertical angular errors, false and missed/late detections, and estimated distance at closest point of approach after an avoidance maneuver is executed. This last metric is directly impacted by sensor performance and indicates its suitability for the task

    A new method for imaging nuclear threats using cosmic ray muons

    Full text link
    Muon tomography is a technique that uses cosmic ray muons to generate three dimensional images of volumes using information contained in the Coulomb scattering of the muons. Advantages of this technique are the ability of cosmic rays to penetrate significant overburden and the absence of any additional dose delivered to subjects under study above the natural cosmic ray flux. Disadvantages include the relatively long exposure times and poor position resolution and complex algorithms needed for reconstruction. Here we demonstrate a new method for obtaining improved position resolution and statistical precision for objects with spherical symmetry

    Obtaining material identification with cosmic ray radiography

    Full text link
    The passage of muons through matter is mostly affected by their Coulomb interactions with electrons and nuclei. The muon interactions with electrons lead to continuous energy loss and stopping of muons, while their scattering off nuclei lead to angular 'diffusion'. By measuring both the number of stopped muons and angular changes in muon trajectories we can estimate density and identify materials. Here we demonstrate the material identification using data taken at Los Alamos with the Mini Muon Tracker.Comment: 10 pages, 9 figures, Accepted to AIP Advance

    Exploiting horizontal pleiotropy to search for causal pathways within a Mendelian randomization framework

    Get PDF
    In Mendelian randomization (MR) analysis, variants that exert horizontal pleiotropy are typically treated as a nuisance. However, they could be valuable in identifying alternative pathways to the traits under investigation. Here, we developed MR-TRYX, a framework that exploits horizontal pleiotropy to discover putative risk factors for disease. We begin by detecting outliers in a single exposure-outcome MR analysis, hypothesising they are due to horizontal pleiotropy. We search across hundreds of complete GWAS summary datasets to systematically identify other (candidate) traits that associate with the outliers. We developed a multi-trait pleiotropy model of the heterogeneity in the exposure-outcome analysis due to pathways through candidate traits. Through detailed investigation of several causal relationships, many pleiotropic pathways are uncovered with already established causal effects, validating the approach, but also alternative putative causal pathways. Adjustment for pleiotropic pathways reduces the heterogeneity across the analyses

    The Ursinus Weekly, April 7, 1977

    Get PDF
    Ursinus news in brief: New CCC organized; Class elections to be held; Volunteers needed at Norristown; Exec. Comm. meets with Pres.; Late examination fee cancelled; Night school requirement changed • WCC meets food service rep. • New asst. to Harris chosen • Cub and Key inducts new members • Comment: A fond farewell to a close friend; Initial optimism of a new editor • Weekly special: FBI warns of more terrorist attacks • Letters to the editor • Movie attack: Bomb renamed • A low-scale of relief • Alumni assoc. gives gift • Dog Day afternoon • Forum review: Horrors recalled • Meisters prepare tour • Women\u27s basketball reaches nationals • USGA survey • Senior dance • 1977 baseball: title bound? • Bears begin seasonhttps://digitalcommons.ursinus.edu/weekly/1069/thumbnail.jp

    Rapidly Progressive Dementia Due to Mycobacterium neoaurum Meningoencephalitis

    Get PDF
    Dementia developed in a patient with widespread neurologic manifestations; she died within 5 months. Pathologic findings showed granulomatous inflammation with caseation necrosis, foreign body–type giant cells, and proliferative endarteritis with vascular occlusions. Broad-range polymerase chain reaction identified Mycobacterium neoaurum as the possible pathogen. Central nervous system infection by M. neoaurum may result in rapidly progressive dementia

    Baryons at the Edge of the X-ray Brightest Galaxy Cluster

    Full text link
    Studies of the diffuse X-ray emitting gas in galaxy clusters have provided powerful constraints on cosmological parameters and insights into plasma astrophysics. However, measurements of the faint cluster outskirts have become possible only recently. Using data from the Suzaku X-ray telescope, we determined an accurate, spatially resolved census of the gas, metals, and dark matter out to the edge of the Perseus Cluster. Contrary to previous results, our measurements of the cluster baryon fraction are consistent with the expected universal value at half of the virial radius. The apparent baryon fraction exceeds the cosmic mean at larger radii, suggesting a clumpy distribution of the gas, which is important for understanding the ongoing growth of clusters from the surrounding cosmic web.Comment: Accepted for publicatio

    The Inheritance of Resistance Alleles in Multiple Sclerosis

    Get PDF
    Multiple sclerosis (MS) is a complex trait in which alleles at or near the class II loci HLA-DRB1 and HLA-DQB1 contribute significantly to genetic risk. HLA-DRB1*15 and HLA-DRB1*17-bearing haplotypes and interactions at the HLA-DRB1 locus increase risk of MS but it has taken large samples to identify resistance HLA-DRB1 alleles. In this investigation of 7,093 individuals from 1,432 MS families, we have assessed the validity, mode of inheritance, associated genotypes, and the interactions of HLA-DRB1 resistance alleles. HLA-DRB1*14-, HLA-DRB1*11-, HLA-DRB1*01-, and HLA-DRB1*10-bearing haplotypes are protective overall but they appear to operate by different mechanisms. The first type of resistance allele is characterised by HLA-DRB1*14 and HLA-DRB1*11. Each shows a multiplicative mode of inheritance indicating a broadly acting suppression of risk, but a different degree of protection. In contrast, a second type is exemplified by HLA-DRB1*10 and HLA-DRB1*01. These alleles are significantly protective when they interact specifically in trans with HLA-DRB1*15-bearing haplotypes. HLA-DRB1*01 and HLA-DRB1*10 do not interact with HLA-DRB1*17, implying that several mechanisms may be operative in major histocompatibility complex–associated MS susceptibility, perhaps analogous to the resistance alleles. There are major practical implications for risk and for the exploration of mechanisms in animal models. Restriction of antigen presentation by HLA-DRB1*15 seems an improbably simple mechanism of major histocompatibility complex–associated susceptibility
    • …
    corecore