4,479 research outputs found

    New and Old Results in Resultant Theory

    Full text link
    Resultants are getting increasingly important in modern theoretical physics: they appear whenever one deals with non-linear (polynomial) equations, with non-quadratic forms or with non-Gaussian integrals. Being a subject of more than three-hundred-year research, resultants are of course rather well studied: a lot of explicit formulas, beautiful properties and intriguing relationships are known in this field. We present a brief overview of these results, including both recent and already classical. Emphasis is made on explicit formulas for resultants, which could be practically useful in a future physics research.Comment: 50 pages, 15 figure

    SDiff(2) and uniqueness of the Pleba\'{n}ski equation

    Full text link
    The group of area preserving diffeomorphisms showed importance in the problems of self-dual gravity and integrability theory. We discuss how representations of this infinite-dimensional Lie group can arise in mathematical physics from pure local considerations. Then using Lie algebra extensions and cohomology we derive the second Pleba\'{n}ski equation and its geometry. We do not use K\"ahler or other additional structures but obtain the equation solely from the geometry of area preserving transformations group. We conclude that the Pleba\'{n}ski equation is Lie remarkable

    Anomalous Diffusion at Edge and Core of a Magnetized Cold Plasma

    Full text link
    Progress in the theory of anomalous diffusion in weakly turbulent cold magnetized plasmas is explained. Several proposed models advanced in the literature are discussed. Emphasis is put on a new proposed mechanism for anomalous diffusion transport mechanism based on the coupled action of conductive walls (excluding electrodes) bounding the plasma drain current (edge diffusion) together with the magnetic field flux "cutting" the area traced by the charged particles in their orbital motion. The same reasoning is shown to apply to the plasma core anomalous diffusion. The proposed mechanism is expected to be valid in regimes when plasma diffusion scales as Bohm diffusion and at high B/NB/N, when collisions are of secondary importance.Comment: 9 pages, 4 figure

    Exact results for scattering on ultrashort plane wave backgrounds

    Get PDF
    We give exact results for the emission spectra of both nonlinear Breit-Wheeler pair production and nonlinear Compton scattering in ultra-intense, ultra-short duration plane wave backgrounds, modelled as delta-function pulses. This includes closed form expressions for total scattering probabilities. We show explicitly that these probabilities do not exhibit the power-law scaling with intensity associated with the conjectured breakdown of (Furry picture) perturbation theory, instead scaling logarithmically in the high-intensity limit.Comment: 9 pages, 4 pdf figure

    Dynamical lattice instability versus spin liquid state in a frustrated spin chain system

    Full text link
    The low-dimensional s=1/2 compound (NO)[Cu(NO3)3] has recently been suggested to follow the Nersesyan-Tsvelik model of coupled spin chains. Such a system shows unbound spinon excitations and a resonating valence bond ground state due spin frustration. Our Raman scattering study demonstrates phonon anomalies as well as the suppression of a broad magnetic scattering continuum for temperatures below a characteristic temperature, T<T*=100K. We interpret these effects as evidence for a dynamical interplay of spin and lattice degrees of freedom that might lead to a further transition into a dimerized or structurally distorted phase at lower temperatures.Comment: 5 pages, 6 figure

    Phase Diagram of Multilayer Magnetic Structures

    Full text link
    Multilayer "ferromagnet-layered antiferromagnet" (Fe/Cr) structures frustrated due to the roughness of layer interfaces are studied by numerical modeling methods. The "thickness-roughness" phase diagrams for the case of thin ferromagnetic film on the surface of bulk antiferromagnet and for two ferromagnetic layers separated by an antiferromagnetic interlayer are obtained and the order parameter distributions for all phases are found. The phase transitions nature in such systems is considered. The range of applicability for the "magnetic proximity model" proposed by Slonczewski is evaluated.Comment: 8 pages, 8 figure

    Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer

    Get PDF
    We have studied temperature dependences of electron transport in graphene and its bilayer and found extremely low electron-phonon scattering rates that set the fundamental limit on possible charge carrier mobilities at room temperature. Our measurements have shown that mobilities significantly higher than 200,000 cm2/Vs are achievable, if extrinsic disorder is eliminated. A sharp (threshold-like) increase in resistivity observed above approximately 200K is unexpected but can qualitatively be understood within a model of a rippled graphene sheet in which scattering occurs on intra-ripple flexural phonons
    • …
    corecore