9,038 research outputs found
Interphase layer optimization for metal matrix composites with fabrication considerations
A methodology is presented to reduce the final matrix microstresses for metal matrix composites by concurrently optimizing the interphase characteristics and fabrication process. Application cases include interphase tailoring with and without fabrication considerations for two material systems, graphite/copper and silicon carbide/titanium. Results indicate that concurrent interphase/fabrication optimization produces significant reductions in the matrix residual stresses and strong coupling between interphase and fabrication tailoring. The interphase coefficient of thermal expansion and the fabrication consolidation pressure are the most important design parameters and must be concurrently optimized to further reduce the microstresses to more desirable magnitudes
Tailored metal matrix composites for high-temperature performance
A multi-objective tailoring methodology is presented to maximize stiffness and load carrying capacity of a metal matrix cross-ply laminated at elevated temperatures. The fabrication process and fiber volume ratio are used as the design variables. A unique feature is the concurrent effects from fabrication, residual stresses, material nonlinearity, and thermo-mechanical loading on the laminate properties at the post-fabrication phase. For a (0/90)(sub s) graphite/copper laminate, strong coupling was observed between the fabrication process, laminate characteristics, and thermo-mechanical loading. The multi-objective tailoring was found to be more effective than single objective tailoring. Results indicate the potential to increase laminate stiffness and load carrying capacity by controlling the critical parameters of the fabrication process and the laminate
Anticontrol of Chaos Reduces Spectral Emissions
Switch-mode power supplies usually emit electromagnetic interferences at the switching frequency and its harmonics. Inducing chaos in these systems has recently been suggested as a means of reducing these spectral emissions, yet at the expense of aggravating the overall magnitude of the ripple in the output voltage. We propose here a new nonlinear feedback, which induces chaos and which is able at the same time to achieve a low spectral emission and to maintain a small ripple in the output. The design of this new and simple controller is based on the propriety that chaotified nonlinear systems present many independent chaotic attractors of small dimensions
Baryon Masses in Partially Quenched Heavy Hadron Chiral Perturbation Theory
The masses of baryons containing a heavy quark are calculated to
next-to-leading order in partially quenched heavy hadron chiral perturbation
theory. Calculations are performed for three light flavors in the isospin limit
and additionally for two light non-degenerate flavors. The results presented
are necessary for extrapolating lattice QCD and partially quenched lattice QCD
calculations of the heavy hadron masses.Comment: 20 pages, 2 figures, RevTex
Light elements in massive single and binary stars
We highlight the role of the light elements (Li, Be, B) in the evolution of
massive single and binary stars, which is largely restricted to a diagnostic
value, and foremost so for the element boron. However, we show that the boron
surface abundance in massive early type stars contains key information about
their foregoing evolution which is not obtainable otherwise. In particular, it
allows to constrain internal mixing processes and potential previous mass
transfer event for binary stars (even if the companion has disappeared). It may
also help solving the mystery of the slowly rotating nitrogen-rich massive main
sequence stars.Comment: 10 pages, 8 figures, to appear in proc. IAU-Symp. 268. C. Charbonnel
et al., eds
Evolution of Exoplanets and their Parent Stars
Studying exoplanets with their parent stars is crucial to understand their
population, formation and history. We review some of the key questions
regarding their evolution with particular emphasis on giant gaseous exoplanets
orbiting close to solar-type stars. For masses above that of Saturn, transiting
exoplanets have large radii indicative of the presence of a massive
hydrogen-helium envelope. Theoretical models show that this envelope
progressively cools and contracts with a rate of energy loss inversely
proportional to the planetary age. The combined measurement of planetary mass,
radius and a constraint on the (stellar) age enables a global determination of
the amount of heavy elements present in the planet interior. The comparison
with stellar metallicity shows a correlation between the two, indicating that
accretion played a crucial role in the formation of planets. The dynamical
evolution of exoplanets also depends on the properties of the central star. We
show that the lack of massive giant planets and brown dwarfs in close orbit
around G-dwarfs and their presence around F-dwarfs are probably tied to the
different properties of dissipation in the stellar interiors. Both the
evolution and the composition of stars and planets are intimately linked.Comment: appears in The age of stars - 23rd Evry Schatzman School on Stellar
Astrophysics, Roscoff : France (2013
Baryon Electromagnetic Properties in Partially Quenched Heavy Hadron Chiral Perturbation Theory
The electromagnetic properties of baryons containing a heavy quark are
calculated at next-to-leading order in partially quenched heavy hadron chiral
perturbation theory. Calculations are performed for three light flavors in the
isospin limit and additionally for two light non-degenerate flavors. We use
partially-quenched charge matrices that are easy to implement on the lattice.
The results presented are necessary for the light quark mass extrapolation and
zero-momentum extrapolation of lattice QCD and partially quenched lattice QCD
calculations of heavy hadron electromagnetic properties. Additionally relations
between the sextet electromagnetic form factors and transition form factors are
derived.Comment: 29 pages, 3 figures, RevTex
Surface mixing and biological activity in the four Eastern Boundary Upwelling Systems
Eastern Boundary Upwelling Systems (EBUS) are characterized by a high
productivity of plankton associated with large commercial fisheries, thus
playing key biological and socio-economical roles. The aim of this work is to
make a comparative study of these four upwelling systems focussing on their
surface stirring, using the Finite Size Lyapunov Exponents (FSLEs), and their
biological activity, based on satellite data. First, the spatial distribution
of horizontal mixing is analysed from time averages and from probability
density functions of FSLEs. Then we studied the temporal variability of surface
stirring focussing on the annual and seasonal cycle. There is a global negative
correlation between surface horizontal mixing and chlorophyll standing stocks
over the four areas. To try to better understand this inverse relationship, we
consider the vertical dimension by looking at the Ekman-transport and vertical
velocities. We suggest the possibility of a changing response of the
phytoplankton to sub/mesoscale turbulence, from a negative effect in the very
productive coastal areas to a positive one in the open ocean.Comment: 12 pages. NPG Special Issue on "Nonlinear processes in oceanic and
atmospheric flows". Open Access paper, available also at the publisher site:
http://www.nonlin-processes-geophys.net/16/557/2009
- …