45 research outputs found

    Time-resolved single-crystal X-ray crystallography

    Get PDF
    In this chapter the development of time-resolved crystallography is traced from its beginnings more than 30 years ago. The importance of being able to “watch” chemical processes as they occur rather than just being limited to three-dimensional pictures of the reactant and final product is emphasised, and time-resolved crystallography provides the opportunity to bring the dimension of time into the crystallographic experiment. The technique has evolved in time with developments in technology: synchrotron radiation, cryoscopic techniques, tuneable lasers, increased computing power and vastly improved X-ray detectors. The shorter the lifetime of the species being studied, the more complex is the experiment. The chapter focusses on the results of solid-state reactions that are activated by light, since this process does not require the addition of a reagent to the crystalline material and the single-crystalline nature of the solid may be preserved. Because of this photoactivation, time-resolved crystallography is often described as “photocrystallography”. The initial photocrystallographic studies were carried out on molecular complexes that either underwent irreversible photoactivated processes where the conversion took hours or days. Structural snapshots were taken during the process. Materials that achieved a metastable state under photoactivation and the excited (metastable) state had a long enough lifetime for the data from the crystal to be collected and the structure solved. For systems with shorter lifetimes, the first time-resolved results were obtained for macromolecular structures, where pulsed lasers were used to pump up the short lifetime excited state species and their structures were probed by using synchronised X-ray pulses from a high-intensity source. Developments in molecular crystallography soon followed, initially with monochromatic X-ray radiation, and pump-probe techniques were used to establish the structures of photoactivated molecules with lifetimes in the micro- to millisecond range. For molecules with even shorter lifetimes in the sub-microsecond range, Laue diffraction methods (rather than using monochromatic radiation) were employed to speed up the data collections and reduce crystal damage. Future developments in time-resolved crystallography are likely to involve the use of XFELs to complete “single-shot” time-resolved diffraction studies that are already proving successful in the macromolecular crystallographic field.</p

    Noninvasive positive pressure ventilation for acute respiratory failure in children: a concise review

    Get PDF
    Noninvasive positive pressure ventilation (NPPV) refers to the delivery of mechanical respiratory support without the use of endotracheal intubation (ETI). The present review focused on the effectiveness of NPPV in children > 1 month of age with acute respiratory failure (ARF) due to different conditions. ARF is the most common cause of cardiac arrest in children. Therefore, prompt recognition and treatment of pediatric patients with pending respiratory failure can be lifesaving. Mechanical respiratory support is a critical intervention in many cases of ARF. In recent years, NPPV has been proposed as a valuable alternative to invasive mechanical ventilation (IMV) in this acute setting. Recent physiological studies have demonstrated beneficial effects of NPPV in children with ARF. Several pediatric clinical studies, the majority of which were noncontrolled or case series and of small size, have suggested the effectiveness of NPPV in the treatment of ARF due to acute airway (upper or lower) obstruction or certain primary parenchymal lung disease, and in specific circumstances, such as postoperative or postextubation ARF, immunocompromised patients with ARF, or as a means to facilitate extubation. NPPV was well tolerated with rare major complications and was associated with improved gas exchange, decreased work of breathing, and ETI avoidance in 22-100% of patients. High FiO2 needs or high PaCO2 level on admission or within the first hours after starting NPPV appeared to be the best independent predictive factors for the NPPV failure in children with ARF. However, many important issues, such as the identification of the patient, the right time for NPPV application, and the appropriate setting, are still lacking. Further randomized, controlled trials that address these issues in children with ARF are recommended

    Structure and Function of the Human Respiratory Syncytial Virus M2–1 Protein

    Get PDF
    Human respiratory syncytial virus (HRSV) is a non-segmented negative stranded RNA virus and is recognized as the most important viral agent of lower respiratory tract infection worldwide, responsible for up to 199,000 deaths each year. The only FDA-approved regime to prevent HRSV-mediated disease is pre-exposure administration of a humanized HRSV-specific monoclonal antibody, which although being effective, is not in widespread usage due to its cost. No HRSV vaccine exists and so there remains a strong need for alternative and complementary anti-HRSV therapies. The HRSV M2–1 protein is a transcription factor and represents an attractive target for the development of antiviral compounds, based on its essential role in the viral replication cycle. To this end, a detailed analysis of M2–1 structure and functions will aid in identifying rational targets for structure-based antiviral drug design that can be developed in future translational research. Here we present an overview of the current understanding of the structure and function of HRSV M2–1, drawing on additional information derived from its structural homologues from other related viruses

    Structural studies of thermal- and light-induced transitions in iron(II) spin-crossover complexes

    No full text
    Since the spin-crossover (SCO) effect was first discovered, considerable efforts have been made to study compounds that exhibit this phenomenon. Herein we present a selection of our most exciting results from structural studies carried out on some of the fascinating iron(II) SCO compounds we have investigated over the past few years. We discuss a range of compounds from mononuclear to bimetallic polymeric complexes. © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved

    Mannose foraging by Bacteroides thetaiotaomicron: Structure and specificity of the β-mannosidase, BtMan2A

    No full text
    corecore