432 research outputs found

    Estatus de la gestión de riesgos climáticos en el sector agroalimentario y su importancia para la seguridad alimentaria y nutricional en Honduras

    Get PDF
    Honduras ha sido identificado como el país con mayor vulnerabilidad en términos de riesgo, variabilidad y cambio climático de Centroamérica; es por esto que la Secretaría de Agricultura y Ganadería (SAG) en colaboración con el Programa de Investigación de CGIAR en Cambio Climático, Agricultura y Seguridad Alimentaria (CCAFS) en América Latina y con apoyo del Consejo Agropecuario Centroamericano (CAC) presentan el estatus de la investigación en cambio climático, agricultura y seguridad alimentaria, así como el marco gubernamental y actores involucrados en torno a esta temática. El documento evidencia que el país cuenta con una estructura legal e institucional que promueve políticas y acciones orientadas a contrarrestar los efectos negativos de éste fenómeno, colaborando continuamente con organizaciones internacionales, academia y sector privado, sin embargo se mantiene en continuo proceso de desarrollo y mejora para incrementar la resiliencia y adaptación al cambio climático así como la mitigación del sector agrícola hondureño

    Arginase attenuates inhibitory nonadrenergic noncholinergic nerve-induced nitric oxide generation and airway smooth muscle relaxation

    Get PDF
    BACKGROUND: Recent evidence suggests that endogenous arginase activity potentiates airway responsiveness to methacholine by attenuation of agonist-induced nitric oxide (NO) production, presumably by competition with epithelial constitutive NO synthase for the common substrate, L-arginine. Using guinea pig tracheal open-ring preparations, we now investigated the involvement of arginase in the modulation of neuronal nitric oxide synthase (nNOS)-mediated relaxation induced by inhibitory nonadrenergic noncholinergic (iNANC) nerve stimulation. METHODS: Electrical field stimulation (EFS; 150 mA, 4 ms, 4 s, 0.5 – 16 Hz)-induced relaxation was measured in tracheal preparations precontracted to 30% with histamine, in the presence of 1 μM atropine and 3 μM indomethacin. The contribution of NO to the EFS-induced relaxation was assessed by the nonselective NOS inhibitor L-NNA (0.1 mM), while the involvement of arginase activity in the regulation of EFS-induced NO production and relaxation was investigated by the effect of the specific arginase inhibitor nor-NOHA (10 μM). Furthermore, the role of substrate availability to nNOS in EFS-induced relaxation was measured in the presence of various concentrations of exogenous L-arginine. RESULTS: EFS induced a frequency-dependent relaxation, ranging from 6.6 ± 0.8% at 0.5 Hz to 74.6 ± 1.2% at 16 Hz, which was inhibited with the NOS inhibitor L-NNA by 78.0 ± 10.5% at 0.5 Hz to 26.7 ± 7.7% at 8 Hz (P < 0.01 all). In contrast, the arginase inhibitor nor-NOHA increased EFS-induced relaxation by 3.3 ± 1.2-fold at 0.5 Hz to 1.2 ± 0.1-fold at 4 Hz (P < 0.05 all), which was reversed by L-NNA to the level of control airways in the presence of L-NNA (P < 0.01 all). Similar to nor-NOHA, exogenous L-arginine increased EFS-induced airway relaxation (P < 0.05 all). CONCLUSION: The results indicate that endogenous arginase activity attenuates iNANC nerve-mediated airway relaxation by inhibition of NO generation, presumably by limiting L-arginine availability to nNOS

    Arginase strongly impairs neuronal nitric oxide-mediated airway smooth muscle relaxation in allergic asthma

    Get PDF
    BACKGROUND: Using guinea pig tracheal preparations, we have recently shown that endogenous arginase activity attenuates inhibitory nonadrenergic noncholinergic (iNANC) nerve-mediated airway smooth muscle relaxation by reducing nitric oxide (NO) production – due to competition with neuronal NO-synthase (nNOS) for the common substrate, L-arginine. Furthermore, in a guinea pig model of allergic asthma, airway arginase activity is markedly increased after the early asthmatic reaction (EAR), leading to deficiency of agonist-induced, epithelium-derived NO and subsequent airway hyperreactivity. In this study, we investigated whether increased arginase activity after the EAR affects iNANC nerve-derived NO production and airway smooth muscle relaxation. METHODS: Electrical field stimulation (EFS; 150 mA, 4 ms, 4 s, 0.5 – 16 Hz)-induced relaxation was measured in tracheal open-ring preparations precontracted to 30% with histamine in the presence of 1 μM atropine and 3 μM indomethacin. The contribution of NO to EFS-induced relaxation was assessed by the nonselective NOS inhibitor N(ω)-nitro-L-arginine (L-NNA, 100 μM), while the involvement of arginase activity in the regulation of EFS-induced NO production and relaxation was investigated by the effect of the specific arginase inhibitor N(ω)-hydroxy-nor-L-arginine (nor-NOHA, 10 μM). Furthermore, the role of substrate availability to nNOS was measured in the presence of exogenous L-arginine (5.0 mM). RESULTS: At 6 h after ovalbumin-challenge (after the EAR), EFS-induced relaxation (ranging from 3.2 ± 1.1% at 0.5 Hz to 58.5 ± 2.2% at 16 Hz) was significantly decreased compared to unchallenged controls (7.1 ± 0.8% to 75.8 ± 0.7%; P < 0.05 all). In contrast to unchallenged controls, the NOS inhibitor L-NNA did not affect EFS-induced relaxation after allergen challenge, indicating that NO deficiency underlies the impaired relaxation. Remarkably, the specific arginase inhibitor nor-NOHA normalized the impaired relaxation to unchallenged control (P < 0.05 all), which effect was inhibited by L-NNA (P < 0.01 all). Moreover, the effect of nor-NOHA was mimicked by exogenous L-arginine. CONCLUSION: The results clearly demonstrate that increased arginase activity after the allergen-induced EAR contributes to a deficiency of iNANC nerve-derived NO and decreased airway smooth muscle relaxation, presumably via increased substrate competition with nNOS

    Regulation of neutrophil senescence by microRNAs

    Get PDF
    Neutrophils are rapidly recruited to sites of tissue injury or infection, where they protect against invading pathogens. Neutrophil functions are limited by a process of neutrophil senescence, which renders the cells unable to respond to chemoattractants, carry out respiratory burst, or degranulate. In parallel, aged neutrophils also undergo spontaneous apoptosis, which can be delayed by factors such as GMCSF. This is then followed by their subsequent removal by phagocytic cells such as macrophages, thereby preventing unwanted inflammation and tissue damage. Neutrophils translate mRNA to make new proteins that are important in maintaining functional longevity. We therefore hypothesised that neutrophil functions and lifespan might be regulated by microRNAs expressed within human neutrophils. Total RNA from highly purified neutrophils was prepared and subjected to microarray analysis using the Agilent human miRNA microarray V3. We found human neutrophils expressed a selected repertoire of 148 microRNAs and that 6 of these were significantly upregulated after a period of 4 hours in culture, at a time when the contribution of apoptosis is negligible. A list of predicted targets for these 6 microRNAs was generated from http://mirecords.biolead.org and compared to mRNA species downregulated over time, revealing 83 genes targeted by at least 2 out of the 6 regulated microRNAs. Pathway analysis of genes containing binding sites for these microRNAs identified the following pathways: chemokine and cytokine signalling, Ras pathway, and regulation of the actin cytoskeleton. Our data suggest that microRNAs may play a role in the regulation of neutrophil senescence and further suggest that manipulation of microRNAs might represent an area of future therapeutic interest for the treatment of inflammatory disease

    A potential nitrergic mechanism of action for indomethacin, but not of other COX inhibitors: relevance to indomethacin-sensitive headaches

    Get PDF
    Non-steroidal anti-inflammatory drugs (NSAIDs) that act as cyclo-oxygenase (COX) inhibitors are commonly used in the treatment of a range of headache disorders, although their mechanism of action is unclear. Indomethacin is of particular interest given its very special effect in some primary headaches. Here the in vivo technique of intravital microscopy in rats has been utilised as a model of trigeminovascular nociception to study the potential mechanism of action of indomethacin. Dural vascular changes were produced using electrical (neurogenic) dural vasodilation (NDV), calcitonin gene-related peptide (CGRP) induced dural vasodilation and nitric oxide (NO) induced dural vasodilation using NO donors. In each of these settings the effect of intravenously administered indomethacin (5 mg kg−1), naproxen (30 mg kg−1) and ibuprofen (30 mg kg−1) was tested. All of the tested drugs significantly inhibited NDV (between 30 and 52%). Whilst none of them was able to inhibit CGRP-induced dural vasodilation, only indomethacin reduced NO induced dural vasodilation (35 ± 7%, 10 min post administration). We conclude NSAIDs inhibit release of CGRP after NDV without an effect on CGRP directly. Further we describe a differentiating effect of indomethacin inhibiting nitric oxide induced dural vasodilation that is potentially relevant to understanding its unique action in disorders such as paroxysmal hemicrania and hemicrania continua

    Regulation of Thromboxane Receptor Signaling at Multiple Levels by Oxidative Stress-Induced Stabilization, Relocation and Enhanced Responsiveness

    Get PDF
    Thromboxane A(2) (TxA(2)) is a major, unstable arachidonic acid metabolite, and plays a key role in normal physiology and control of vascular tone. The human thromboxane receptor (TPβ), expressed in COS-7 cells, is located predominantly in the endoplasmic reticulum (ER). Brief hydrogen peroxide exposure increases the efficiency of translocation of TPβ from the ER into the Golgi complex, inducing maturation and stabilization of TPβ. However, the ultimate fate of this post-ER TPβ pool is not known, nor is its capacity to initiate signal transduction. Here we specifically assessed if functional TPβ was transported to the plasma membrane following H(2)O(2) exposure.We demonstrate, by biotinylation and confocal microscopy, that exposure to H(2)O(2) results in rapid delivery of a cohort of TPβ to the cell surface, which is stable for at least eight hours. Surface delivery is brefeldin A-sensitive, indicating that translocation of this receptor cohort is from internal pools and via the Golgi complex. H(2)O(2) treatment results in potentiation of the increase to intracellular calcium concentrations in response to TPβ agonists U46619 and 8-iso PGF(2α) and also in the loss of ligand-dependent receptor internalization. Further there is increased responsiveness to a second application of the agonist. Finally we demonstrate that the effect of H(2)O(2) on stimulating surface delivery is shared with the FP prostanoid receptor but not the EP3 or EP4 receptors.In summary, brief exposure to H(2)O(2) results in an immediate and sustained increase in the surface pool of thromboxane receptor that is capable of mediating a persistent hyper-responsiveness of the cell and suggests a highly sophisticated mechanism for rapidly regulating thromboxane signaling

    Protective effect of EDTA preadministration on renal ischemia

    Get PDF
    BACKGROUND: Chelation therapy with sodium edetate (EDTA) improved renal function and slowed the progression of renal insufficiency in patients subjected to lead intoxication. This study was performed to identify the underlying mechanism of the ability of EDTA treatment to protect kidneys from damage. METHODS: The effects of EDTA administration were studied in a rat model of acute renal failure induced by 60 minutes ischemia followed or not by 60 minutes reperfusion. Renal ischemic damage was evaluated by histological studies and by functional studies, namely serum creatinine and blood urea nitrogen levels. Treatment with EDTA was performed 30 minutes before the induction of ischemia. Polymorphonuclear cell (PMN) adhesion capability, plasmatic nitric oxide (NO) levels and endothelial NO synthase (eNOS) renal expression were studied as well as the EDTA protection from the TNFα-induced vascular leakage in the kidneys. Data was compared by two-way analysis of variance followed by a post hoc test. RESULTS: EDTA administration resulted in the preservation of both functional and histological parameters of rat kidneys. PMN obtained from peripheral blood of EDTA-treated ischemized rats, displayed a significant reduction in the expression of the adhesion molecule Mac-1 with respect to controls. NO was significantly increased by EDTA administration and eNOS expression was higher and more diffuse in kidneys of rats treated with EDTA than in the controls. Finally, EDTA administration was able to prevent in vivo the TNFα-induced vascular leakage in the kidneys. CONCLUSION: This data provides evidence that EDTA treatment is able to protect rat kidneys from ischemic damage possibly through the stimulation of NO production

    Nitric oxide-an endogenous inhibitor of gastric acid secretion in isolated human gastric glands

    Get PDF
    BACKGROUND: Endothelial nitric oxide synthase (eNOS) has previously been detected in the glandular part of the human gastric mucosa. Furthermore, nitric oxide (NO) has been shown to influence gastric secretion in various animal models. The present study was conducted to investigate the influence of exogenously and endogenously derived NO on histamine- and cAMP-stimulated gastric acid secretion in isolated human oxyntic glands. METHODS: Oxyntic glands were isolated from human gastric biopsies and were subsequently pre-treated with NO donors and nitric oxide synthase inhibitors and then exposed to histamine or dibutyryl-cAMP (db-cAMP). The secretory response of the glands was determined as accumulation of [(14)C]aminopyrine. RESULTS: The histamine- or db-cAMP-induced acid secretion was attenuated by L-arginine, a known source of endogenous NO, and also by the NO-donors sodium nitroprusside (SNP) and S-nitroso-N-acetyl-penicillamine (SNAP). Pre-treatment with either of the NOS inhibitors N(G)-nitro-L-arginine methyl ester (L-NAME) or N(G)-nitro-L-arginine (L-NNA) enhanced the secretory response. CONCLUSION: Our results show that NO inhibits gastric acid secretion in isolated human gastric glands, and that there is endogenous formation of NO within the glandular epithelium in the vicinity of the parietal cells

    Synaptic tagging and capture in the living rat

    Get PDF
    In isolated hippocampal slices, decaying long-term potentiation can be stabilized and converted to late long-term potentiation lasting many hours, by prior or subsequent strong high-frequency tetanization of an independent input to a common population of neurons—a phenomenon known as ‘synaptic tagging and capture’. Here we show that the same phenomenon occurs in the intact rat. Late long-term potentiation can be induced in CA1 during the inhibition of protein synthesis if an independent input is strongly tetanized beforehand. Conversely, declining early long-term potentiation induced by weak tetanization can be converted into lasting late long-term potentiation by subsequent strong tetanization of a separate input. These findings indicate that synaptic tagging and capture is not limited to in vitro preparations; the past and future activity of neurons has a critical role in determining the persistence of synaptic changes in the living animal, thus providing a bridge between cellular studies of protein synthesis-dependent synaptic potentiation and behavioural studies of memory persistence
    corecore