46 research outputs found

    Design and Implementation of SMS Based Anomalous Event Mitigation Process for Complex Event Processing Application

    Get PDF
    This paper describes the design and implementation of SMS based event mitigation for Complex Event Processing (CEP) application. The CAISERTM's CEP platform were used to develop event processing systems which detects and identifies complex events based on patterns of previous and current lower order events. CAISERTM then generates mitigation action for anomalous events and executes them via 3 types of SMS based notification. An implementation of the SMS based event mitigation in a CEP based Server Farm Monitoring system is also described in this paper. The performance of the event mitigation process using SMS is evaluated and described in this paper

    Room Searching Performance Evaluation for the JagaBotTM Indoor Surveillance Robot

    Get PDF
    This paper reports the evaluation of the performance of room searching capability for the JagaBotTM Indoor Surveillance Robot. The ultimate objective of the JagaBotTM is to be applied as an event actor, inspecting the secured environment automatically and feeding the dynamic view of the surrounding to remote user. It can also be used to communicate with persons inside the monitored area. A web service based instruction panel was used to command the JagaBotTM to designated rooms. The JagaBotTM then navigates itself to the room automatically, scanning for the QR code marker attached to room door, tracking a designated trail of lines through its QR code and line tracking camera. The result of this room’s searching procedure shows that the JagaBotTM achieved its objective of correct room finding in favorable time. A 100% correct search result was obtained with an average velocity of 0.1748 m/s under the current setting

    Activity Recognition for Smart Building Application Using Complex Event Processing Approach

    Get PDF
    Activity recognition has become one of the most interesting and challenging subjects in performing surveillance or monitoring of smart building system. Although there are several systems already available in the market, limitations and several unresolved issues remain, especially when it involves complex engineering applications. As such, activity recognition is purposely incorporated in the smart system to detect simple and complex events that happen in the building. In all existing event detections, the complex event processing (CEP) approach has been used for the detection of complex events. The CEP is capable of abstracting meaningful events from various and heterogeneous data sources, filtering and processing both simple and complex events, as well as, producing fast mitigation action based on specific scenarios. The work reported in this paper intends to explain in detail on the development of activity recognition application using CAISER™ and NESPER© platform as well as the complex event detection that uses the CEP approach. In assessing the system performance, Matthew Coefficient Correlation (MCC) has been used as the main performance parameter.  Results obtained showed that the Temporal Constraint Template Match Detector (TCD) is more accurate, stable and better in complex event detection compared to NESPER© detector

    A Finite State Machine Fall Detection Using Quadrilateral Shape Features

    Get PDF
    A video-based fall detection system was presented; which consists of data acquisition, image processing, feature extraction, feature selection, classification and finite state machine. A two-dimensional human posture image was represented by 12 features extracted from the generalisation of a silhouette shape to a quadrilateral. The corresponding feature vectors for three groups of human pose were statistically analysed by using a non-parametric Kruskal Wallis test to assess the different significance level between them. From the statistical test, non-significant features were discarded. Four selected kernel-based Support Vector Machine: linear, quadratics, cubic and Radial Basis Function classifiers were trained to classify three human posture groups. Among four classifiers, the last one performed the best in terms of performance matric on testing set. The classifier outperformed others with high achievement ofaverage sensitivity, precision and F-score of 99.19%, 99.25% and 99.22%, respectively. Such pose classification model output was further used in a simple finite state machine to trigger the falling event alarms. The fall detection system was tested on different fall video sets and able to detect the presence offalling events in a frame sequence of videos with accuracy of 97.32% and low computional time

    Investigation of Internal Gas Leakage on the Gate Valve using Acoustic Signal

    Get PDF
    The gate valve is primarily used for starting/stopping the flow of fluids. It is suitable for most fluids such as water and chemicals as well as air, steam and gas in petrochemical and refinery plants that require high temperature and low pressure. The aim of this study is to define the frequency domain using AE signals, such as RMS and ASL, to determine the internal gas leakage. The conducted experiment employed a 4-inch diameter gate valve installed in the middle of the pipe length. To simulate industrial applications, the AE signals were observed at low-frequency (between 18.6 kHz to 19.5 kHz), with inlet pressures between 100 to 800 kPa and leakage rates between 0.5 percent to 2 percent. The frequency domain between 18.6 to 19.5 kHz and the inlet pressure of 100 to 800 kPa were displayed as the Root Mean Square (RMS) and Average Signal Limit (ASL). The pressure difference between the inlet and outlet influences the AE signal. The frequency spectrum can be correlated with the pressure leakage, thus providing leakage conditions. Therefore, the obtained results can be employed in industrial applications

    Internet of things (IOT) based air conditioner monitoring system for intelligent facility maintenance

    Get PDF
    Office buildings often consume high energy to sustain building operations such as HVAC systems. A lack of proper decision-making approaches and a lack of maintenance planning will cause higher operational costs. This paper proposes data analytics for air conditioner’s performance in laboratory by using Internet of Things (IoT)-based monitoring system to improve efficiency in facility maintenance. It provides a monitoring system, notification system and performance dashboard to enable data analytics. The data analytics methods used here are i) condition-based maintenance which includes thermal analysis and electrical analysis; and ii) Overall Equipment Effectiveness (OEE) approach. The pre-maintenance performance measured for AC-1 is adequate while AC-2 does not meet the requirement. After the reactive maintenance was performed on AC-2; there was a performance increment of 63.15%. Based on sensors data, it seems to correlate between current draw and low refrigerant. It aids facility maintenance for early failure detection, which helps in decision-making. The result from the OEE approach also suggested the same decision-making to schedule maintenance. Performance needs to balance out to leverage power consumption without hefty operational costs for maintenance strategies. In conclusion, the data analytics provide insight for the maintenance management to monitor and schedule preventive maintenance before air conditioner (AC) faults happen. Meanwhile, the modified OEE approach for ACs to measure performance takes into consideration speed to cool down air and cost to run the AC which has not been explored yet elsewhere

    Suspicious loitering detection from annotated CCTV feed using CEP based approach

    Get PDF
    Smart Surveillance System is a critical system that enables automated detection of anomalous activities from live CCTV feed. The main challenge that needs to be addressed by the Smart Surveillance System is the ability to understand and detect the activities that are currently occurring within the CCTV feed. Suspicious loitering is considered one of the anomalous activities that precede unwanted events, such as break-ins, burglary, and robbery. In this research, the Complex Event Processing (CEP) approach was selected as the system development approach for developing a Smart Surveillance System. Four types of similarity search-based event detectors, namely the Multi-Layered Event Detector for General Application (MEGA), Temporally Constrained Template Match Detector (TCD), Sliding Window Detector (SWD), and Weighted Sliding Window Detector (WSWD) were tested and evaluated to determine the best suspicious loitering event detector to be used in the Smart Surveillance System. The input data to the detectors comprised manually annotated real CCTV feed which was subjected to three noise conditions: (i) no-noise (0% noise) annotation, (ii) 25% noisy annotation and (iii) 46.8% noisy annotation. The 46.8% noisy annotation is assumed to reflect the real ambient operating condition of the Smart Surveillance System; while the no-noise condition was assumed to reflect the perfect CCTV feed acquisition and annotation process. The performance of the detectors was measured in terms of sensitivity, specificity, detection accuracy, and the area under the Receiver’s Operating Curve (ROC). The results obtained showed that MEGA is the best overall detector for suspicious loitering detection in ambient operating conditions with detection accuracy of 97.20% and area under ROC curve of 0.6117

    Probabilistic-Based Analysis for Damaging Features of Fatigue Strain Loadings

    Get PDF
    This paper presents the behaviour of fatigue damage extraction in fatigue strain histories of automotive components using the probabilistic approach. This is a consideration for the evaluation of fatigue damage extraction in automotive components under service loading that is vital in a reliability analysis. For the purpose of research work, two strain signals data are collected from a car coil spring during a road test. The fatigue strain signals are then extracted using the wavelet transform in order to extract the high amplitude segments that contribute to the fatigue damage. At this stage, the low amplitude segments are removed because of their minimal contribution to the fatigue damage. The fatigue damage based on all extracted segments is calculated using some significant strain-life models. Subsequently, the statistics-based Weibull distribution is applied to evaluate the fatigue damage extraction. It has been found that about 70% of the probability of failure occurs in the 1.0 x 10-5 to 1.0 x 10-4 damage range for both signals, while 90% of the probability of failure occurs in the 1.0 x 10-4 to 1.0 x 10-3 damage range. Lastly, it is suggested that the fatigue damage can be determined by the Weibull distribution analysi

    Review of Person Re-identification Techniques

    Full text link
    Person re-identification across different surveillance cameras with disjoint fields of view has become one of the most interesting and challenging subjects in the area of intelligent video surveillance. Although several methods have been developed and proposed, certain limitations and unresolved issues remain. In all of the existing re-identification approaches, feature vectors are extracted from segmented still images or video frames. Different similarity or dissimilarity measures have been applied to these vectors. Some methods have used simple constant metrics, whereas others have utilised models to obtain optimised metrics. Some have created models based on local colour or texture information, and others have built models based on the gait of people. In general, the main objective of all these approaches is to achieve a higher-accuracy rate and lowercomputational costs. This study summarises several developments in recent literature and discusses the various available methods used in person re-identification. Specifically, their advantages and disadvantages are mentioned and compared.Comment: Published 201

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions
    corecore