

Conference Paper

Room Searching Performance Evaluation for the JagaBotTM Indoor Surveillance Robot

Mohamad Hanif Md Saad, Rabiah Adawiyah Shahad, and Aini Hussain

¹Dept. of Mechanical & Material Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor DE, Malaysia ²Dept. of Electric, Electronic & Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor DE, Malaysia

Abstract

This paper reports the evaluation of the performance of room searching capability for the JagaBotTM Indoor Surveillance Robot. The ultimate objective of the JagaBotTM is to be applied as an event actor, inspecting the secured environment automatically and feeding the dynamic view of the surrounding to remote user. It can also be used to communicate with persons inside the monitored area. A web service based instruction panel was used to command the JagaBotTM to designated rooms. The JagaBotTM then navigates itself to the room automatically, scanning for the QR code marker attached to room door, tracking a designated trail of lines through its QR code and line tracking camera. The result of this room's searching procedure shows that the JagaBotTM achieved its objective of correct room finding in favorable time. A 100% correct search result was obtained with an average velocity of 0.1748 m/s under the current setting.

Keywords: Indoor Surveillance Robot, QR code, and web service

1. Introduction

Automated Ground Vehicle (AGV) type robot has been used in many applications including surveillance. The Smart Engineering System Research Group (SESRG) has successfully designed an AGV type robot, called the JagaBotTM, for surveillance application. The robot is tasked with monitoring the environment dynamically, going from room to room and also to act as an actor, one which is commanded remotely to inspect a particular room upon detection of an anomalous event from that room (for example, from Closed Circuit Television (CCTV) observation manually or automatically).

There are several AGV robot developed for surveillance system, for example [1] presented a prototypical multi-robot surveillance system that is able to monitor an outdoor environment autonomously and visual surveillance system mounted on the mobile robot as developed by [2]. A navigation architecture for autonomous mobile robot was developed by [3] to run in environment based on stereo vision camera utilizing the Binocular Stereo Vision Based Obstacle Avoidance technique. A robot for intruder detection and surveillance task was developed by [4] and [5] demonstrated a surveillance robot capable of capturing and transmitting video on rough terrains. [6] has incorporated unique feature of surveillance robot, which is travelling capability on both land and water.

Corresponding Author: Mohamad Hanif Md Saad; email: hanifsaad@ukm.edu.my

Received: 1 August 2016 Accepted: 18 August 2016 Published: 6 September 2016

Publishing services provided by Knowledge E

© Mohamad Hanif Md Saad et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Selection and Peer-review under the responsibility of the ICoSE Conference Committee.

2. JagaBo TM Infrastructure

The JagaBotTM infrastructure is shown in Fig. 1 (b). The web service based command mechanism of JagaBotTM is shown in Fig.1 (a). The instruction panel can be replaced by desktop instruction panel or android device based instruction panel. However, the web service act as the main communication hub for JagaBotTM. Several versions of the JagaBot was developed. The version shown in Fig. 1 (b), which is the JagaBot-Jo₃, is the latest version of the JagaBotTM [7].

It uses an Intel NUC mini PC as the main controller, connected with a web cam for Quick Response (QR) code reading, a downward pointing line tracking camera, and two forward pointing wireless Internet Protocol (IP) camera for monitoring purposes. It also has two main screen, the larger one is used to display the Graphical User Interface (GUI) and the remote telecommunication module while the smaller one is used as a control panel. A Teensy microcontroller act as a field controller, connecting the NUC Mini PC to the sensor and actuator and all the instrumentation circuit below. The JagaBotTM is move by two Direct Current (DC) motor and powered by 2 12V sealed lead acid battery.

3. Objective of Study

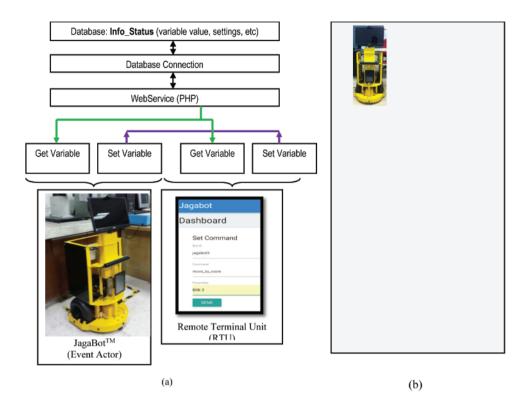

The objective of the study is to establish the performance of the JagaBotTM in achieving targeted room for inspection and to derive a mathematical model depicting the target to arrival time with JagaBotTM current location.

Figure 2 shows JagaBotTM path in detecting the desired room. JagaBotTM will go through the red line track for straight movement. When the green line marker is detected, JagaBot will make a turn based on the side detected and scan the QR code provided. If the QR code gives correct room reading, JagaBotTM will enter the room.

4. Experiment Design

From the X_s starting point, the robot were assigned to move to any of the rooms (room 1 (D1), 2 (D2), 3 (D5), 4 (D3), 5 (D4), 7 (D7)) using the web service based command panel. The experiment were repeated for several times. The floor plan of the experiment location is shown in Fig. 3 below.

Figure 4 shows the sequence of JagaBotTM movement. It started from identifying the command for the room to be searched. Then, JagaBotTM will move forward and find the room markers. Once JagaBotTM detect the marker, it will turned to identify the room using QR code displayed in front of the door. If the QR code shows the wrong room, JagaBotTM will turn back and continuously move forward to find the correct room. If the identified QR code shows the correct room, JagaBotTM will enter the room for inspection. We have also develop a model to estimate the arrival time (T_{Target}) to destination.

5. Results

Table 1 shows the JagaBotTM performance evaluation. The time taken for each target is measured using Eq. 1.

$$T_{Target} = T_{straight} + T_{QRC} + T_{QRI} * N + T_{Initial}$$
(1)

Where,

 T_{Target} : Estimated time for JagaBotT^M to reach target room.

T_{ORC}: Time spent when scanning correct QR code (Measured experimetally).

 T_{QRI} : Time spent when scanning incorrect QR code (Measured experimetally).

 $T_{straight}$: Time taken to move in a straight line from X_s (shifted by $T_{Initial}$) to targeted door

Marker (Measured experimentally).

N : Number of turn.

 $T_{Initial}$: Pick up time required for the JagaBotTM motor to ramp up to nominal speed.

5.1. Ассигасу

Both T_{Target} and $T_{Measured}$ depends on N and the distance from starting point. The T_{Target} is estimated using Eq. 1 and measured experimentally ($T_{Measured}$). The results of the experiment shows that all room were identified and reached succesfully. The average

Figure 2: QR-Code Depicting The Door (Left,Top), The lines Tracked (left, Middle), Door Marker (Left, Bottom), JagaBot TM Inspecting the Door (Right Bottom), Doors are opened automatically and JagaBot TM Enters (Right Top).

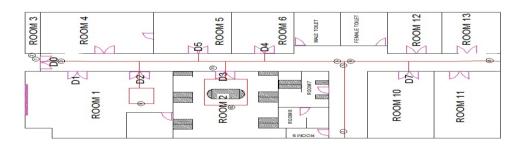


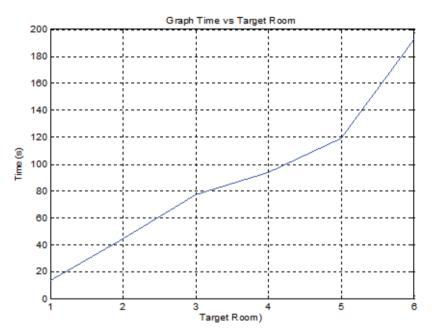
Figure 3: Design Floor Plan.

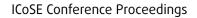
Figure 4: Sequence of Jagabot Movement.

percentage of error between T_{Target} and $T_{measured}$ is 3.14% only, which indicates that the model is in good agreement with the real system behaviour.

Room	Distance (m)	Turn	Test Run 1	Test Run 2	Test Run 3	Estimated Time (T _{Target})	Actual Time (T _{Measured})	Error	Error (%)	Speed (m/s)
room 1	1.07	0	8	9	8	13.26	13.62	0.0275	2.75	0.128
room 2	6.18	1	44	46	44	47.56	44.53	0.0680	6.80	0.138
room 5	10.08	2	73	73	74	74.94	77.43	0.0332	3.32	0.140
room 3	12.78	3	98	95	94	95.45	93.97	0.0157	1.58	0.134
room 4	15.38	4	120	121	124	115.39	119.3	0.0338	3.38	0.126
room 7	27.18	5	196	194	193	187.98	192.82	0.0257	2.57	0.140

Average percentage of error = 3.14%




Figure 5: Time taken by JagaBot to reach target room.

5.2. Speed of Detection and Reach

The average measured value of $V_{Straight}$ ($V_{Straight}$ = Distance / $T_{straight}$) is 0.1748 m/s. However, $T_{Measured}$ and T_{Target} depends on the room distance and number of verification it has to do before reaching the correct target. Figure 5 shows speed and time performance of JagaBotTM

6. Conclusion

The JagaBotTM was proven to be able to detect all room using QR code accurately. Good agreement was obtained between predicted arrival time to target room (T_{Target}) and the measured arrival time $(T_{Measured})$, with an average percentage of error of 3.14%. Using this model, it would be possible to accurately estimate the arrival time based on JagaBotTM current location. In future, the JagaBotTM will be integrated into our

smart environment system, Sekitar. We will also work on various improvement to the JagaBotTM system to improve the speed and the detection accuracy.

7. Acknowledgement

The authors would like to express their gratitude to the Government of Malaysia and National University of Malaysia for financing this research via the DPP-2015-011 research grant.

References

- H. Schulz, T. Rohling, and D. Schulz, Autonomous camp surveillance with a coordinated multi robot system, 1–6, (2009), 2009 IEEE International Workshop on Safety, Security Rescue Robotics (SSRR).
- [2] M.-S. Yu, H. Wu, and H.-Y. Lin, A visual surveillance system for mobile robot using omnidirectional and PTZ cameras, 1–6, (2010), Proceedings of SICE Annual Conference 2010.
- [3] S. Kumar and P. Awasthi, Navigation architecture for autonomous surveillance rover, *Int. J. Comput. Theory Eng.*, **1**, 231–235, (2009).
- [4] N. Gonc, M. Shanmugavel, and B. White, in *Indoor active surveillance*, 1129–1136, 1995.
- [5] S. Keshri, A Real-time Scheme of Video Stabilization for Mobile Surveillance Robot (2013).
- [6] V. Divya, S. Dharanya, S. Shaheen, and A. Umamakeswari, Amphibious Surveillance Robot with Smart Sensor Nodes, 2–5
- [7] M. A. Hannan, et al., in JagaBotTM: Intelligent Patrol Robot For Comprehensive Surveillance System Using Complex Event Processing Approach, Bangi, Selangor, 2015.