46 research outputs found

    Critical role of TNF-alpha-TNFR1 signaling in intracranial aneurysm formation

    Get PDF
    BACKGROUND: Intracranial aneurysm (IA) is a socially important disease due to its high incidence in the general public and the severity of resultant subarachnoid hemorrhage that follows rupture. Despite the social importance of IA as a cause of subarachnoid hemorrhage, there is no medical treatment to prevent rupture, except for surgical procedures, because the mechanisms regulating IA formation are poorly understood. Therefore, these mechanisms should be elucidated to identify a therapeutic target for IA treatment. In human IAs, the presence of inflammatory responses, such as an increase of tumor necrosis factor (TNF)-alpha, have been observed, suggesting a role for inflammation in IA formation. Recent investigations using rodent models of IAs have revealed the crucial role of inflammatory responses in IA formation, supporting the results of human studies. Thus, we identified nuclear factor (NF)-kappaB as a critical mediator of inflammation regulating IA formation, by inducing downstream pro-inflammatory genes such as MCP-1, a chemoattractant for macrophages, and COX-2. In this study, we focused on TNF-alpha signaling as a potential cascade that regulates NF-kappaB-mediated IA formation. RESULTS: We first confirmed an increase in TNF-alpha content in IA walls during IA formation, as expected based on human studies. Consistently, the activity of TNF-alpha converting enzyme (TACE), an enzyme responsible for TNF-alpha release, was induced in the arterial walls after aneurysm induction in a rat model. Next, we subjected tumor necrosis factor receptor superfamily member 1a (TNFR1)-deficient mice to the IA model to clarify the contribution of TNF-alpha-TNFR1 signaling to pathogenesis, and confirmed significant suppression of IA formation in TNFR1-deficient mice. Furthermore, in the IA walls of TNFR1-deficient mice, inflammatory responses, including NF-kappaB activation, subsequent expression of MCP-1 and COX-2, and infiltration of macrophages into the IA lesion, were greatly suppressed compared with those in wild-type mice. CONCLUSIONS: In this study, using rodent models of IAs, we clarified the crucial role of TNF-alpha-TNFR1 signaling in the pathogenesis of IAs by inducing inflammatory responses, and propose this signaling as a potential therapeutic target for IA treatment

    Prostaglandin E-2-EP2-NF-kappa B signaling in macrophages as a potential therapeutic target for intracranial aneurysms

    Get PDF
    Intracranial aneurysms are common but are generally untreated, and their rupture can lead to subarachnoid hemorrhage. Because of the poor prognosis associated with subarachnoid hemorrhage, preventing the progression of intracranial aneurysms is critically important. Intracranial aneurysms are caused by chronic inflammation of the arterial wall due to macrophage infiltration triggered by monocyte chemoattractant protein-1 (MCP-1), macrophage activation mediated by the transcription factor nuclear factor kappa B (NF-kappa B), and inflammatory signaling involving prostaglandin E-2 (PGE(2)) and prostaglandin E receptor subtype 2 (EP2). We correlated EP2 and cyclooxygenase-2 (COX-2) with macrophage infiltration in human intracranial aneurysm lesions. Monitoring the spatiotemporal pattern of NF-kappa B activation during intracranial aneurysm development in mice showed that NF-kappa B was first activated in macrophages in the adventitia and in endothelial cells and, subsequently, in the entire arterial wall. Mice with a macrophage-specific deletion of Ptger2 (which encodes EP2) or macrophage-specific expression of an I kappa B alpha mutant that restricts NF-kappa B activation had fewer intracranial aneurysms with reduced macrophage infiltration and NF-kappa B activation. In cultured cells, EP2 signaling cooperated with tumor necrosis factor-alpha (TNF-alpha) to activate NF-kappa B and synergistically induce the expression of proinflammatory genes, including Ptgs2 (encoding COX-2). EP2 signaling also stabilized Ccl2 (encoding MCP-1) by activating the RNA-stabilizing protein HuR. Rats administered an EP2 antagonist had reduced macrophage infiltration and intracranial aneurysm formation and progression. This signaling pathway in macrophages thus facilitates intracranial aneurysm development by amplifying inflammation in intracranial arteries. These results indicate that EP2 antagonists may therefore be a therapeutic alternative to surgery.Peer reviewe

    Support for UNRWA's survival

    Get PDF
    The United Nations Relief and Works Agency for Palestine Refugees in the Near East (UNRWA) provides life-saving humanitarian aid for 5·4 million Palestine refugees now entering their eighth decade of statelessness and conflict. About a third of Palestine refugees still live in 58 recognised camps. UNRWA operates 702 schools and 144 health centres, some of which are affected by the ongoing humanitarian disasters in Syria and the Gaza Strip. It has dramatically reduced the prevalence of infectious diseases, mortality, and illiteracy. Its social services include rebuilding infrastructure and homes that have been destroyed by conflict and providing cash assistance and micro-finance loans for Palestinians whose rights are curtailed and who are denied the right of return to their homeland

    Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension

    Get PDF
    OBJECTIVE: To evaluate whether eculizumab helps patients with anti-acetylcholine receptor-positive (AChR+) refractory generalized myasthenia gravis (gMG) achieve the Myasthenia Gravis Foundation of America (MGFA) post-intervention status of minimal manifestations (MM), we assessed patients' status throughout REGAIN (Safety and Efficacy of Eculizumab in AChR+ Refractory Generalized Myasthenia Gravis) and its open-label extension. METHODS: Patients who completed the REGAIN randomized controlled trial and continued into the open-label extension were included in this tertiary endpoint analysis. Patients were assessed for the MGFA post-intervention status of improved, unchanged, worse, MM, and pharmacologic remission at defined time points during REGAIN and through week 130 of the open-label study. RESULTS: A total of 117 patients completed REGAIN and continued into the open-label study (eculizumab/eculizumab: 56; placebo/eculizumab: 61). At week 26 of REGAIN, more eculizumab-treated patients than placebo-treated patients achieved a status of improved (60.7% vs 41.7%) or MM (25.0% vs 13.3%; common OR: 2.3; 95% CI: 1.1-4.5). After 130 weeks of eculizumab treatment, 88.0% of patients achieved improved status and 57.3% of patients achieved MM status. The safety profile of eculizumab was consistent with its known profile and no new safety signals were detected. CONCLUSION: Eculizumab led to rapid and sustained achievement of MM in patients with AChR+ refractory gMG. These findings support the use of eculizumab in this previously difficult-to-treat patient population. CLINICALTRIALSGOV IDENTIFIER: REGAIN, NCT01997229; REGAIN open-label extension, NCT02301624. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, after 26 weeks of eculizumab treatment, 25.0% of adults with AChR+ refractory gMG achieved MM, compared with 13.3% who received placebo

    Minimal Symptom Expression' in Patients With Acetylcholine Receptor Antibody-Positive Refractory Generalized Myasthenia Gravis Treated With Eculizumab

    Get PDF
    The efficacy and tolerability of eculizumab were assessed in REGAIN, a 26-week, phase 3, randomized, double-blind, placebo-controlled study in anti-acetylcholine receptor antibody-positive (AChR+) refractory generalized myasthenia gravis (gMG), and its open-label extension

    Syntheses and Molecular Structures of Monomeric and Hydrogen-Bonded Dimeric Dawson-Type Trialuminum-Substituted Polyoxotungstates Derived under Acidic and Basic Conditions

    No full text
    The syntheses and molecular structures of the two types of α-Dawson-type trialuminum-substituted polyoxometalates, [B-α-H<sub>3</sub>P<sub>2</sub>W<sub>15</sub>O<sub>59</sub>{Al­(OH<sub>2</sub>)}<sub>3</sub>]<sup>6–</sup> (<b>1</b>) and [B-α-H<sub>3</sub>P<sub>2</sub>W<sub>15</sub>O<sub>59</sub>{Al­(OH)}<sub>2</sub>{Al­(OH<sub>2</sub>)}]<sub>2</sub><sup>16–</sup> (<b>2</b>), are described herein. The potassium and cesium salts of <b>1</b>, K<sub>6</sub>[B-α-H<sub>3</sub>P<sub>2</sub>W<sub>15</sub>O<sub>59</sub>{Al­(OH<sub>2</sub>)}<sub>3</sub>]·14H<sub>2</sub>O (<b>K-1</b>), and Cs<sub>6</sub>[B-α-H<sub>3</sub>P<sub>2</sub>W<sub>15</sub>O<sub>59</sub>{Al­(OH<sub>2</sub>)}<sub>3</sub>]·13H<sub>2</sub>O (<b>Cs-1</b>) were formed by a stoichiometric reaction in water of trilacunary α-Dawson polyoxotungstate with aluminum nitrate under acidic conditions (pH ∼3). The potassium/sodium and tetramethylammonium/sodium salts of <b>2</b>, K<sub>14</sub>Na<sub>2</sub>[B-α-H<sub>3</sub>P<sub>2</sub>W<sub>15</sub>O<sub>59</sub>{Al­(OH)}<sub>2</sub>{Al­(OH<sub>2</sub>)}]<sub>2</sub>·30H<sub>2</sub>O (<b>KNa-2</b>) and [(CH<sub>3</sub>)<sub>4</sub>N]<sub>14</sub>Na<sub>2</sub>[B-α-H<sub>3</sub>P<sub>2</sub>W<sub>15</sub>O<sub>59</sub>{Al­(OH)}<sub>2</sub>{Al­(OH<sub>2</sub>)}]<sub>2</sub>·39H<sub>2</sub>O (<b>TMANa-2</b>) were obtained under basic conditions (pH ∼9). These compounds were characterized by X-ray structure analyses, elemental analyses, thermogravimetric/differential thermal analyses, Fourier transform infrared, and solution <sup>31</sup>P, <sup>27</sup>Al, and <sup>183</sup>W NMR spectroscopy. The polyoxoanion <b>1</b> is a monomeric, α-Dawson-type structure, resulting in an overall <i>C</i><sub>3<i>v</i></sub> symmetry, while the polyoxoanion <b>2</b> is a hydrogen-bonded dimeric structure, resulting in an overall <i>S</i><sub>3</sub> symmetry in the solid state. The pH dependence of polyoxoanions <b>1</b> and <b>2</b> in aqueous solution was also investigated by <sup>31</sup>P NMR spectroscopy

    Retrospective analysis of antitumor effects and biomarkers for nivolumab in NSCLC patients with EGFR mutations.

    No full text
    Although the blockade of programmed cell death 1 (PD-1)/PD-ligand (L) 1 has demonstrated promising and durable clinical responses for non-small-cell lung cancers (NSCLCs), NSCLC patients with epidermal growth factor receptor (EGFR) mutations responded poorly to PD-1/PD-L1 inhibitors. Previous studies have identified several predictive biomarkers, including the expression of PD-L1 on tumor cells, for PD-1/PD-L1 blockade therapies in NSCLC patients; however, the usefulness of these biomarkers in NSCLCs with EGFR mutations has not been elucidated. The present study was conducted to evaluate the predictive biomarkers for PD-1/PD-L1 inhibitors in EGFR-mutated NSCLCs. We retrospectively analyzed 9 patients treated with nivolumab for EGFR-mutated NSCLCs. All but one patient received EGFR-tyrosine kinase inhibitors before nivolumab treatment. The overall response rate and median progression-free survival were 11% and 33 days (95% confidence interval (CI); 7 to 51), respectively. Univariate analysis revealed that patients with a good performance status (P = 0.11; hazard ratio (HR) 0.183, 95% CI 0.0217 to 1.549), a high density of CD4+ T cells (P = 0.136; HR 0.313, 95% CI 0.045 to 1.417) and a high density of Foxp3+ cells (P = 0.09; HR 0.264, 95% CI 0.0372 to 1.222) in the tumor microenvironment tended to have longer progression-free survival with nivolumab. Multivariate analysis revealed that a high density of CD4+ T cells (P = 0.005; HR<0.001, 95% CI <0.001 to 0.28) and a high density of Foxp3+ cells (P = 0.003; HR<0.001, 95% CI NA) in tumor tissues were strongly correlated with better progression-free survival. In contrast to previous studies in wild type EGFR NSCLCs, PD-L1 expression was not associated with the clinical benefit of anti-PD-1 treatment in EGFR-mutated NSCLCs. The current study indicated that immune status in the tumor microenvironment may be important for the effectiveness of nivolumab in NSCLC patients with EGFR mutations
    corecore