224 research outputs found

    Less Invasive Mitral Valve Surgery via Right Minithoracotomy

    Get PDF
    Background/PurposeCurrent trends in cardiac surgical intervention are moving toward less invasiveness, with smaller wound or sternum-sparing, less pump time or off-pump, and beating rather than arrested heart. Data on the efficacy and safety of these newer less invasive techniques, as well as their cosmetic results, are limited. This study analyzed the results of a sternum-sparing mitral valve operation.MethodsThirty patients with mitral valve diseases, including 20 who underwent mitral valve repair and 10 mitral valve replacement, were enrolled. Cardiopulmonary bypass was established via femoral cannu-lation, and blood cardioplegic arrest was induced by using a percutaneous, transthoracic cross-clamp. The main surgical wound was made over the lateral border of the right breast. Two additional small wounds were required for the transthoracic aortic clamp and the mitral retractor.ResultsThere was no operative mortality, and all patients had an uneventful recovery. Two patients underwent redo mitral surgery. Nine associated procedures were performed including tricuspid valve annulo-plasty in six patients, tricuspid valve replacement in two patients and atrial septal defect repair in one patient. The length of the main wound was between 5.8 and 7.8 cm (mean, 7.1 cm). The mean cardiopul-monary bypass time and cross-clamp time were 91.1 and 43.7 minutes, respectively. Although the length of stay was not significantly reduced compared with traditional median sternotomy, all patients had satisfactory results with good cosmesis.ConclusionSternum-sparing mitral valve surgery appears to be a safe and effective alternative to conventional mitral valve surgery; it is less invasive and provides superior cosmetic results for patients

    Nanofibrous insulin/vildagliptin core-shell PLGA scaffold promotes diabetic wound healing

    Get PDF
    Introduction: Slow wound repair in diabetes is a serious adverse event that often results in loss of a limb or disability. An advanced and encouraging vehicle is wanted to enhance clinically applicable diabetic wound care. Nanofibrous insulin/vildagliptin core-shell biodegradable poly (lactic-co-glycolic acid) (PLGA) scaffolds to prolong the effective drug delivery of vildagliptin and insulin for the repair of diabetic wounds were prepared.Methods: To fabricate core-shell nanofibrous membranes, vildagliptin mixture with PLGA, and insulin solution were pumped via separate pumps into two differently sized capillary tubes that were coaxially electrospun.Results and Discussion: Nanofibrous core-shell scaffolds slowly released effective vildagliptin and insulin over 2 weeks in vitro migration assay and in vivo wound-healing models. Water contact angle (68.3 ± 8.5° vs. 121.4 ± 2.0°, p = 0.006) and peaked water absorbent capacity (376% ± 9% vs. 283% ± 24%, p = 0.003) of the insulin/vildagliptin core-shell nanofibrous membranes remarkably exceeded those of a control group. The insulin/vildagliptin-loaded core-shell nanofibers improved endothelial progenitor cells migration in vitro (762 ± 77 cells/mm2 vs. 424.4 ± 23 cells/mm2, p < 0.001), reduced the α-smooth muscle actin content in vivo (0.72 ± 0.23 vs. 2.07 ± 0.37, p < 0.001), and increased diabetic would recovery (1.9 ± 0.3 mm2 vs. 8.0 ± 1.4 mm2, p = 0.002). Core-shell insulin/vildagliptin-loaded nanofibers extend the drug delivery of insulin and vildagliptin and accelerate the repair of wounds associated with diabetes

    Comparison of Acute Lobar Nephronia and Acute Pyelonephritis in Children: A Single-Center Clinical Analysis in Southern Taiwan

    Get PDF
    BackgroundPatients with acute lobar nephronia (ALN) require a longer duration of antimicrobial treatment than those with acute pyelonephritis (APN), and ALN is associated with renal scarring. The aim of this study was to provide an understanding of ALN by comparing the clinical features of pediatric patients with ALN and APN.MethodsWe enrolled all of the patients with ALN (confirmed by computed tomography) admitted to our hospital from 1999 to 2012 in the ALN group. In addition, each patient diagnosed with APN who was matched for sex, age, and admission date to each ALN patient was enrolled in the APN group. The medical charts of patients in these two groups were retrospectively reviewed and analyzed for comparison.ResultsThe fever duration after hospitalization in the ALN group and the APN group were 4.85 ± 2.33 days and 2.30 ± 1.47 days respectively. The microbiological distributions and the majority of susceptibilities were similar in the ALN and APN groups. The majority of clinical manifestations are nonspecific and unreliable for the differentiation of ALN and APN. The patients with ALN were febrile for longer after antimicrobial treatment, had more nausea/vomiting symptoms, higher neutrophil count, bandemia, and C-reactive protein (CRP) levels, and lower platelet count (all p < 0.05). In multivariate analysis, initial CRP levels, nausea/vomiting symptoms, and fever duration after admission were independent variables with statistical significance to predict ALN. Severe nephromegaly occurred significantly more in the ALN group than in the APN group (p = 0.022).ConclusionThe majority of clinical manifestations, laboratory findings, and microbiological features are similar between patients with ALN and APN. Clinicians should keep a high index of suspicion regarding ALN, particularly for those with ultrasonographic nephromegaly, initial higher CRP, nausea/vomiting, and fever for > 5 days after antimicrobial treatment

    Independent Association of Overhydration with All-Cause and Cardiovascular Mortality Adjusted for Global Left Ventricular Longitudinal Systolic Strain and E/E’ Ratio in Maintenance Hemodialysis Patients

    Get PDF
    Background/Aims: Fluid overload is common and associated with morbidity and mortality in patients with end-stage renal disease. The relationship between fluid overload and cardiac function is complex, and whether fluid overload is associated with adverse outcomes in patients undergoing hemodialysis (HD) independently of systolic and diastolic function of the left ventricle (LV) remains unclear. Methods: The present study aimed to investigate the relationship between overhydration and all-cause and cardiovascular (CV) mortality after adjusting for LV function in 178 maintenance HD patients. The relative hydration status (overhydration/ extracellular water, ∆HS) was measured using a body composition monitor, and then used to assess the fluid status. A ∆HS ≥7% was defined as fluid overload. Global left ventricular longitudinal systolic strain (GLS), and the early filling and early diastolic mitral annular velocity (E/E’) ratio were assessed using speckle-tracking and tissue Doppler echocardiography. Results: During a mean follow-up period of 2.7 years, 24 patients died, including 11 CV deaths. An increased ∆HS was significantly associated with all-cause and CV mortality in the univariate analysis. This prognostic significance remains after multivariate adjusting for GLS and E/E’ ratio for all-cause (HR, 1.123; 95% CI, 1.063–1.186; p-value &#x3c; 0.001) and CV (HR, 1.088; 95% CI, 1.005–1.178; p-value =0.037) mortality. Moreover, ∆HS significantly improved the prognostic value beyond conventional clinical and echocardiographic parameters. Conclusion: A higher ∆HS was independently associated with increased all-cause and CV mortality after adjusting for systolic and diastolic function of the LV. This suggests that ∆HS may be a relevant target for improving outcomes in maintenance HD patients

    Complexity of the Tensegrity Structure for Dynamic Energy and Force Distribution of Cytoskeleton during Cell Spreading

    Get PDF
    Cytoskeleton plays important roles in intracellular force equilibrium and extracellular force transmission from/to attaching substrate through focal adhesions (FAs). Numerical simulations of intracellular force distribution to describe dynamic cell behaviors are still limited. The tensegrity structure comprises tension-supporting cables and compression-supporting struts that represent the actin filament and microtubule respectively, and has many features consistent with living cells. To simulate the dynamics of intracellular force distribution and total stored energy during cell spreading, the present study employed different complexities of the tensegrity structures by using octahedron tensegrity (OT) and cuboctahedron tensegrity (COT). The spreading was simulated by assigning specific connection nodes for radial displacement and attachment to substrate to form FAs. The traction force on each FA was estimated by summarizing the force carried in sounding cytoskeletal elements. The OT structure consisted of 24 cables and 6 struts and had limitations soon after the beginning of spreading by declining energy stored in struts indicating the abolishment of compression in microtubules. The COT structure, double the amount of cables and struts than the OT structure, provided sufficient spreading area and expressed similar features with documented cell behaviors. The traction force pointed inward on peripheral FAs in the spread out COT structure. The complex structure in COT provided further investigation of various FA number during different spreading stages. Before the middle phase of spreading (half of maximum spreading area), cell attachment with 8 FAs obtained minimized cytoskeletal energy. The maximum number of 12 FAs in the COT structure was required to achieve further spreading. The stored energy in actin filaments increased as cells spread out, while the energy stored in microtubules increased at initial spreading, peaked in middle phase, and then declined as cells reached maximum spreading. The dynamic flows of energy in struts imply that microtubules contribute to structure stabilization

    Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels

    Get PDF
    Large-scale meta-analyses of genome-wide association studies (GWAS) have identified >175 loci associated with fasting cholesterol levels, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG). With differences in linkage disequilibrium (LD) structure and allele frequencies between ancestry groups, studies in additional large samples may detect new associations. We conducted staged GWAS meta-analyses in up to 69,414 East Asian individuals from 24 studies with participants from Japan, the Philippines, Korea, China, Singapore, and Taiwan. These meta-analyses identified (P < 5 × 10-8) three novel loci associated with HDL-C near CD163-APOBEC1 (P = 7.4 × 10-9), NCOA2 (P = 1.6 × 10-8), and NID2-PTGDR (P = 4.2 × 10-8), and one novel locus associated with TG near WDR11-FGFR2 (P = 2.7 × 10-10). Conditional analyses identified a second signal near CD163-APOBEC1. We then combined results from the East Asian meta-analysis with association results from up to 187,365 European individuals from the Global Lipids Genetics Consortium in a trans-ancestry meta-analysis. This analysis identified (log10Bayes Factor ≥6.1) eight additional novel lipid loci. Among the twelve total loci identified, the index variants at eight loci have demonstrated at least nominal significance with other metabolic traits in prior studies, and two loci exhibited coincident eQTLs (P < 1 × 10-5) in subcutaneous adipose tissue for BPTF and PDGFC. Taken together, these analyses identified multiple novel lipid loci, providing new potential therapeutic targets

    Genetic Drivers of Heterogeneity in Type 2 Diabetes Pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P \u3c 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care

    Genetic drivers of heterogeneity in type 2 diabetes pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P &lt; 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.</p
    corecore