419 research outputs found

    De-biasing interferometric visibilities in VLTI-AMBER data of low SNR observations

    Full text link
    AIMS: We have found that the interferometric visibilities of VLTI-AMBER observations, extracted via the standard reduction package, are significantly biased when faint targets are concerned. The visibility biases derive from a time variable fringing effect (correlated noise) appearing on the detector. METHODS: We have developed a method to correct this bias that consists in a subtraction of the extra power due to such correlated noise, so that the real power spectrum at the spatial frequencies of the fringing artifact can be restored. RESULTS: This pre-processing procedure is implemented in a software, called AMDC and available to the community, to be run before the standard reduction package. Results obtained on simulated and real observations are presented and discussed.Comment: 7 pages, 9 figure

    3D climate modeling of close-in land planets: Circulation patterns, climate moist bistability and habitability

    Full text link
    The inner edge of the classical habitable zone is often defined by the critical flux needed to trigger the runaway greenhouse instability. This 1D notion of a critical flux, however, may not be so relevant for inhomogeneously irradiated planets, or when the water content is limited (land planets). Here, based on results from our 3D global climate model, we find that the circulation pattern can shift from super-rotation to stellar/anti stellar circulation when the equatorial Rossby deformation radius significantly exceeds the planetary radius. Using analytical and numerical arguments, we also demonstrate the presence of systematic biases between mean surface temperatures or temperature profiles predicted from either 1D or 3D simulations. Including a complete modeling of the water cycle, we further demonstrate that for land planets closer than the inner edge of the classical habitable zone, two stable climate regimes can exist. One is the classical runaway state, and the other is a collapsed state where water is captured in permanent cold traps. We identify this "moist" bistability as the result of a competition between the greenhouse effect of water vapor and its condensation. We also present synthetic spectra showing the observable signature of these two states. Taking the example of two prototype planets in this regime, namely Gl581c and HD85512b, we argue that they could accumulate a significant amount of water ice at their surface. If such a thick ice cap is present, gravity driven ice flows and geothermal flux should come into play to produce long-lived liquid water at the edge and/or bottom of the ice cap. Consequently, the habitability of planets at smaller orbital distance than the inner edge of the classical habitable zone cannot be ruled out. Transiting planets in this regime represent promising targets for upcoming observatories like EChO and JWST.Comment: Accepted for publication in Astronomy and Astrophysics, complete abstract in the pdf, 18 pages, 18 figure

    VLTI/AMBER spectro-interferometric imaging of VX Sgr's inhomogenous outer atmosphere

    Full text link
    Aims. We aim to explore the photosphere of the very cool late-type star VX Sgr and in particular the existence and characterization of molecular layers above the continuum forming photosphere. Methods. We obtained interferometric observations with the VLTI/AMBER interferometer using the fringe tracker FINITO in the spectral domain 1.45-2.50 micron with a spectral resolution of about 35 and baselines ranging from 15 to 88 meters.We perform independent image reconstruction for different wavelength bins and fit the interferometric data with a geometrical toy model.We also compare the data to 1D dynamical models of Miras atmosphere and to 3D hydrodynamical simulations of red supergiant (RSG) and asymptotic giant branch (AGB) stars. Results. Reconstructed images and visibilities show a strong wavelength dependence. The H-band images display two bright spots whose positions are confirmed by the geometrical toy model. The inhomogeneities are qualitatively predicted by 3D simulations. At about 2,00 micron and in the region 2,35 - 2,50 micron, the photosphere appears extended and the radius is larger than in the H band. In this spectral region, the geometrical toy model locates a third bright spot outside the photosphere that can be a feature of the molecular layers. The wavelength dependence of the visibility can be qualitatively explained by 1D dynamical models of Mira atmospheres. The best-fitting photospheric models show a good match with the observed visibilities and give a photospheric diameter of theta = 8,82+-0,50 mas. The H2O molecule seems to be the dominant absorber in the molecular layers. Conclusions. We show that the atmosphere of VX Sgr rather resembles Mira/AGB star model atmospheres than RSG model atmospheres. In particular, we see molecular (water) layers that are typical for Mira stars.Comment: 9 Pages, Accepted for publication on Astronomy & Astrophysics, two references update

    Dark spots and cold jets in the polar regions of Mars: new clues from a thermal model of surface CO ice

    No full text
    International audienceObservations of the Martian CO ice cap in late winter and spring have revealed exotic phenomena. Unusual dark spots, fans and blotches form as the south-polar seasonal CO ice cap retreats. The formation mechanisms of these features are not clearly understood. Theoretical models suggest that photons could penetrate deep into the CO ice down to the regolith, leading to basal sublimation and gas and dust ejection. We have developed a detailed thermal model able to simulate the temporal evolution of the regolith-CO ice layer-atmosphere column. It takes into account heat conduction, radiative transfer within the ice and the atmosphere, and latent heat exchange when there is a phase transition. We found that a specific algorithm, fully coupling these 3 components, was needed to properly predict ice sublimation below the surface. Our model allows us to determine under what conditions basal sublimation is possible and thus when and where it can occur on Mars. Our results show that basal sublimation is possible if we consider large pathlengths and very little dust content within the ice. Moreover, the model can explain how dark spots can appear very early after the end of the polar night at high latitudes. We also evaluate the importance of the different parameters in our simulations. Contrary to what was suggested by theoretical models, the role of seasonal thermal waves is found to be limited. Solar radiation alone can initiate basal sublimation, which therefore only depends on the CO ice properties. Three main modes were identified: one where condensation/sublimation only occurs at the surface (in the case of small grains and/or high dust content), one where basal sublimation is possible (large pathlengths and very little dust content) and an intermediate mode where sublimation within the ice may occur. We suggest that these different modes could be keys to understanding many processes that occur at the surface of Mars, like the anticryptic area behavior or the recent reported activity in gullies

    Material ejection by the cold jets and temperature evolution of the south seasonal polar cap of Mars from THEMIS/CRISM observations and implications for surface properties

    Get PDF
    As the seasonal CO_2 ice polar caps of Mars retreat during spring, dark spots appear on the ice in some specific regions. These features are thought to result from basal sublimation of the transparent CO_2 ice followed by ejection of regolith-type material, which then covers the ice. We have used Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) reflectance data, Thermal Emission Imaging System (THEMIS) visible images, and THEMIS-derived temperature retrievals along with a thermal numerical model to constrain the physical and compositional characteristics of the seasonal cap for several areas exhibiting dark spots at both high spatial and temporal resolutions. Data analysis suggests an active period of material ejection (before solar longitude (Ls) 200), accumulation around the ejection points, and spreading of part of the ejected material over the whole area, followed by a period where no significant amount of material is ejected, followed by complete defrosting (≈ Ls 245). Dark material thickness on top of the CO_2 ice is estimated to range from a few hundreds of microns to a few millimeters in the warmest spots, based on numerical modeling combined with the observed temperature evolution. The nature of the venting process and the amount of material that is moved lead to the conclusion that it could have an important impact on the surface physical properties

    Data reduction for the AMBER instrument

    Get PDF
    We present here the general formalism and data processing steps used in the data reduction pipeline of the AMBER instrument. AMBER is a three-telescope interferometric beam combiner in J, H and K bands installed at ESO\'s Very Large Telescope Interferometer. The fringes obtained on the 3 pairs of telescopes are spatially coded and spectrally dispersed. These are monitored on a 512x512 infrared camera at frame rates up to 100 frames per second, and this paper presents the algorithm used to retrieve the complex coherent visibility of the science target and the subsequent squared visibility, dierential phase and phase closure on the 3 bases and in the 3 spectral bands available in AMBER

    Modelling Slope Microclimates in the Mars Planetary Climate Model

    Full text link
    A large number of surface phenomena (e.g., frost and ice deposits, gullies, slope streaks, recurring slope lineae) are observed on Martian slopes. Their formation is associated with specific microclimates on these slopes that have been mostly studied with one-dimensional radiative balance models to date. We demonstrate here that any Martian slope can be thermally represented by a poleward or equatorward slope, i.e., the daily average, minimum, and maximum surface temperatures depend on the North-South component of the slope. Based on this observation, we propose here a subgrid-scale parameterization to represent slope microclimates in coarse-resolution global climate models. We implement this parameterization in the Mars Planetary Climate Model and validate it through comparisons with surface temperature measurements and frost detections on sloped terrains. With this new model, we show that these slope microclimates do not have a significant impact on the seasonal CO2 and H2O cycle. Our model also simulates for the first time the heating of the atmosphere by warm plains surrounding slopes. Active gullies are mostly found where our model predicts CO2_2 frost, suggesting that the formation of gullies is mostly related to processes involving CO2 ice. However, the low thicknesses predicted there rule out mechanisms involving large amounts of ice. This model opens the way to new studies on surface-atmosphere interactions in present and past climates
    corecore