2,346 research outputs found

    Composite front maps for improved visibility of dynamic sea-surface features on cloudy SeaWiFS and AVHRR data

    Get PDF
    Novel techniques have been developed for increasing the value of cloud-affected sequences of Advanced Very High Resolution Radiometer (AVHRR) sea-surface temperature (SST) data and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean colour data for visualising dynamic physical and biological oceanic processes such as fronts, eddies and blooms. The proposed composite front map approach is to combine the location, strength and persistence of all fronts observed over several days into a single map, which allows intuitive interpretation of mesoscale structures. This method achieves a synoptic view without blurring dynamic features, an inherent problem with conventional time-averaging compositing methods. Objective validation confirms a significant improvement in feature visibility on composite maps compared to individual front maps. A further novel aspect is the automated detection of ocean colour fronts, correctly locating 96% of chlorophyll fronts in a test data set. A sizeable data set of 13,000 AVHRR and 1200 SeaWiFS scenes automatically processed using this technique is applied to the study of dynamic processes off the Iberian Peninsula such as mesoscale eddy generation, and many additional applications are identified. Front map animations provide a unique insight into the evolution of upwelling and eddies

    Satellite monitoring of harmful algal blooms (HABs) to protect the aquaculture industry

    Get PDF
    Harmful algal blooms (HABs) can cause sudden and considerable losses to fish farms, for example 500,000 salmon during one bloom in Shetland, and also present a threat to human health. Early warning allows the industry to take protective measures. PML's satellite monitoring of HABs is now funded by the Scottish aquaculture industry. The service involves processing EO ocean colour data from NASA and ESA in near-real time, and applying novel techniques for discriminating certain harmful blooms from harmless algae. Within the AQUA-USERS project we are extending this capability to further HAB species within several European countries

    Rapid water transport by long-lasting modon eddy pairs in the southern midlatitude oceans

    Get PDF
    Water in the ocean is generally carried with the mean flow, mixed by eddies, or transported westward by coherent eddies at speeds close to the long baroclinic Rossby wave speed. Modons (dipole eddy pairs) are a theoretically predicted exception to this behaviour, which can carry water to the east or west at speeds much larger than the Rossby wave speed, leading to unusual transports of heat, nutrients and carbon. We provide the first observational evidence of such rapidly moving modons propagating over large distances. These modons are found in the midlatitude oceans around Australia, with one also seen in the South Atlantic west of the Agulhas region. They can travel at more than ten times the Rossby wave speed of 1–2 cm s^−1, and typically persist for about six months carrying their unusual water mass properties with them, before splitting into individual vortices which can persist for many months longer

    Frequent locations of oceanic fronts as an indicator of pelagic diversity: application to marine protected areas and renewables

    Get PDF
    Frequent locations of thermal fronts in UK shelf seas were identified using an archive of 30,000 satellite images acquired between 1999 and 2008, and applied as a proxy for pelagic diversity in the designation of Marine Protected Areas (MPAs). Networks of MPAs are required for conservation of critical marine habitats within Europe, and there are similar initiatives worldwide. Many pelagic biodiversity hotspots are related to fronts, for example cetaceans and basking sharks around the Isle of Man, Hebrides and Cornwall, and hence remote sensing can address this policy need in regions with insufficient species distribution data. This is the first study of UK Continental Shelf front locations to use a 10-year archive of full-resolution (1.1 km) AVHRR data, revealing new aspects of their spatial and seasonal variability. Frontal locations determined at sea or predicted by ocean models agreed closely with the new frequent front maps, which also identified many additional frontal zones. These front maps were among the most widely used datasets in the recommendation of UK MPAs, and would be applicable to other geographic regions and to other policy drivers such as facilitating the deployment of offshore renewable energy devices with minimal environmental impact

    On the use of satellite-derived frontal metrics in time series analyses of shelf-sea fronts, a study of the Celtic Sea

    Get PDF
    Satellite-derived frontal metrics describe characteristics of oceanic thermal fronts, such as their strength or persistence. They are used in marine science to investigate spatio-temporal variability of thermal fronts or in ecological studies to assist in explaining animal distributions. Although these metrics represent highly processed data, which is based on sometimes complex algorithms, little guidance is available on their correct application in quantitative analyses, in particular for non-specialist users. This research aims to improve accurate use of frontal data. This case study investigates the inter--annual and seasonal variability of two tidal mixing fronts on the Celtic Sea shelf, based on monthly time series of daily frontal maps at ∼1km2 resolution from 1990 to 2010. Some metrics are almost identical and can be grouped, e.g. frontal probability, persistence and so-called “composites” (Pearson correlation: r = 0.8–1.0; p < 0.001), whereas the metric describing frontal strength is distinct from other ones. Consequently, strength and metrics of the frontal probability group showed pronounced differences in their inter-annual and seasonal variability: Strength displayed an oscillating pattern between 1990 and 2010 while there were no significant changes in probability over time. In addition, seasonal variability was affected by segments from adjacent fronts, not belonging to the fronts of interest, which could result in biased estimates. Most important, there was a doubling of available satellite imagery between 1990 and 2010 due to a greater number of operational satellites, which negatively affected frontal probability, positively frontal strength and consequently, changed the temporal pattern of both. When using frontal maps for temporal analyses, we should choose the metric carefully, be aware of biased estimates caused by variability from unwanted frontal segments in the data and account for the variable data quantity. This guide on the use of frontal metrics will be helpful to improve correct interpretations of statistical analyses

    Internal Waves at the UK Continental Shelf: Automatic Mapping Using the ENVISAT ASAR Sensor

    Get PDF
    Oceanic internal waves occur within stratified water along the boundary between water layers of different density and are generated when strong tidal currents flow over seabed topography. Their amplitude can exceed 50 m and they transport energy over long distances and cause vertical mixing when the waves break. This study presents the first fully automated methodology for the mapping of internal waves using satellite synthetic aperture radar (SAR) data and applies this to explore their spatial and temporal distribution within UK shelf seas. The new algorithm includes enhanced edge detection and spatial processing to target the appearance of these features on satellite images. We acquired and processed over 7000 ENVISAT ASAR scenes covering the UK continental shelfbetween2006and2012,toautomaticallygeneratedetailedmapsofinternalwaves. Monthlyand annual internal wave climatology maps of the continental shelf were produced showing spatial and temporal variability, which can be used to predict where internal waves have the most impact on the seabed environment and ecology in UK shelf seas. These observations revealed correlations between thetemporalpatternsofinternalwavesand theseasonswhenthecontinentalshelfwatersweremore stratified. The maps were validated using well-known seabed topographic features. Concentrations of internal waves were automatically identified at Wyville-Thomson Ridge in June 2008, at the continental shelf break to the east of Rosemary Bank in January 2010 and in the Faroe-Shetland Channel in June 2011. This new automated methodology has been shown to be robust for mapping internalwavesusingalargeSARdatasetandisrecommendedforstudiesinotherregionsworldwide and for SAR data acquired by other sensors

    Applications of Satellite Earth Observations section - NEODAAS: Providing satellite data for efficient research

    Get PDF
    The NERC Earth Observation Data Acquisition and Analysis Service (NEODAAS) provides a central point of Earth Observation (EO) satellite data access and expertise for UK researchers. The service is tailored to individual users’ requirements to ensure that researchers can focus effort on their science, rather than struggling with correct use of unfamiliar satellite data

    The influence of ocean acidification on nitrogen regeneration and nitrous oxide production in the North-West European shelf sea

    Get PDF
    The assimilation and regeneration of dissolved inorganic nitrogen, and the concentration of N2O, was investigated at stations located in the NW European shelf sea during June/July 2011. These observational measurements within the photic zone demonstrated the simultaneous regeneration and assimilation of NH4+, NO2− and NO3−. NH4+ was assimilated at 1.82–49.12 nmol N L−1 h−1 and regenerated at 3.46–14.60 nmol N L−1 h−1; NO2− was assimilated at 0–2.08 nmol N L−1 h−1 and regenerated at 0.01–1.85 nmol N L−1 h−1; NO3− was assimilated at 0.67–18.75 nmol N L−1 h−1 and regenerated at 0.05–28.97 nmol N L−1 h−1. Observations implied that these processes were closely coupled at the regional scale and nitrogen recycling played an important role in sustaining phytoplankton growth during the summer. The [N2O], measured in water column profiles, was 10.13 ± 1.11 nmol L−1 and did not strongly diverge from atmospheric equilibrium indicating that sampled marine regions where neither a strong source nor sink of N2O to the atmosphere. Multivariate analysis of data describing water column biogeochemistry and its links to N-cycling activity failed to explain the observed variance in rates of N-regeneration and N-assimilation, possibly due to the limited number of process rate observations. In the surface waters of 5 further stations, Ocean Acidification (OA) bioassay experiments were conducted to investigate the response of NH4+ oxidising and regenerating organisms to simulated OA conditions, including the implications for [N2O]. Multivariate analysis was undertaken which considered the complete bioassay dataset of measured variables describing changes in N-regeneration rate, [N2O] and the biogeochemical composition of seawater. While anticipating biogeochemical differences between locations, we aimed to test the hypothesis that the underlying mechanism through which pelagic N-regeneration responded to simulated OA conditions was independent of location and that a mechanistic understanding of how NH4+ oxidation, NH4+ regeneration and N2O production responded to OA could be developed. Results indicated that N-regeneration process responses to OA treatments were location specific; no mechanistic understanding of how N-regeneration processes respond to OA in the surface ocean of the NW European shelf sea could be developed

    Estimation of Ocean Surface Currents from Maximum Cross Correlation applied to GOCI geostationary satellite remote sensing data over the Tsushima (Korea) Straits

    Get PDF
    Attempts to automatically estimate surface current velocities from satellite-derived thermal or visible imagery face the limitations of data occlusion due to cloud cover, the complex evolution of features and the degradation of their surface signature. The Geostationary Ocean Color Imager (GOCI) provides a chance to reappraise such techniques due to its multi-year record of hourly high-resolution visible spectrum data. Here we present the results of applying a Maximum Cross Correlation (MCC) technique to GOCI data. Using a combination of simulated and real data we derive suitable processing parameters and examine the robustness of different satellite products, those being water-leaving radiance and chlorophyll concentration. These estimates of surface currents are evaluated using High Frequency (HF) radar systems located in the Tsushima (Korea) Strait. We show the performance of the MCC approach varies depending on the amount of missing data and the presence of strong optical contrasts. Using simulated data it was found that patchy cloud cover occupying 25% of the image pair reduces the number of vectors by 20% compared to using perfect images. Root mean square errors between the MCC and HF radar velocities are of the order of 20 cm s−1. Performance varies depending on the wavelength of the data with the blue-green products out-performing the red and near infra-red products. Application of MCC to GOCI chlorophyll data results in similar performance to radiances in the blue-green bands. The technique has been demonstrated using specific examples of an eddy feature and tidal induced features in the region. This article is protected by copyright. All rights reserved

    Near-real-time service provision during effusive crises at Etna and Stromboli: basis and implementation of satellite-based IR operations

    Get PDF
    Using the NEODAAS-Dundee AVHRR receiving station (Scotland), NEODAAS-Plymouth can provide calibrated brightness temperature data to end users or interim users in near-real time. Between 2000 and 2009 these data were used to undertake volcano hot spot detection, reporting and time-average discharge rate dissemination during effusive crises at Mount Etna and Stromboli (Italy). Data were passed via FTP, within an hour of image generation, to the hot spot detection system maintained at Hawaii Institute of Geophysics and Planetology (HIGP, University of Hawaii at Manoa, Honolulu, USA). Final product generation and quality control were completed manually at HIGP once a day, so as to provide information to onsite monitoring agencies for their incorporation into daily reporting duties to Italian Civil Protection. We here describe the processing and dissemination chain, which was designed so as to provide timely, useable, quality-controlled and relevant information for ‘one voice’ reporting by the responsible monitoring agencies
    corecore