153 research outputs found

    Empirical ground-motion prediction equations for Northwestern Turkey using the aftershocks of the 1999 Kocaeli earthquake

    Get PDF
    We present ground motion models for northwestern Turkey using the aftershocks of the Mw 7.4, 1999 Kocaeli earthquake. We consider 4047 velocity and acceleration records for each component of motion, from 528 earthquakes recorded by stations belonging to regional networks. The ground motion models obtained provide peak ground velocity, peak ground acceleration, and spectral accelerations for 8 different frequencies between 1 and 10 Hz. The analysis of the error distribution shows that the record-to-record component of variance is the largest contribution to the standard deviation of the calibrated ground- motion models. Furthermore, a clear dependence of inter-event error on stress drop is observed. The empirical ground-motion prediction equations, derived for both the larger horizontal and vertical components, are valid in the local magnitude range from 0.5 to 5.9, and for hypocentral distances up to 190 km. Citation: Bindi, D., S. Parolai, H. Grosser, C. Milkereit, and E. Durukal (2007), Empirical ground-motion prediction equations for northwestern Turkey using the aftershocks of the 1999 Kocaeli earthquake

    Seismotectonic setting at the North Anatolian Fault Zone after the 1999 Mw=7.4 Izmit earthquake based on high-resolution aftershock locations

    Get PDF
    International audienceThe most recent devastating earthquakes that occurred along the North Anatolian Fault Zone (NAFZ) in northwestern Turkey were the 1999 Izmit (Mw=7.4) and Düzce (Mw=7.1) events. In this study we present a catalog of Izmit aftershock hypocenters that was deduced from a network covering the entire 140 km long rupture of the mainshock. 7348 events with a location accuracy better than 5 km are analysed. Aftershocks were observed along the entire ruptured segment along a 20 km wide band of activity. Events are clustered in distinct regions and dominantly occur at 5 to 15 km depth. The eastern termination of the Izmit rupture is characterized by a sharp and steeply dipping boundary exactly where the Düzce mainshock initiated 87 days after the Izmit event. Relocation of the events using double-difference technology results in 4696 high-resolution hypocenters that allow resolving the internal structure of the seismically active areas with a resolution of 300 m (horizontal) and 400m (vertical). Below the Akyazi Plain, representing a small pull-apart structure at a triple junction of the NAFZ, we identify planes of activity that can be correlated with nodal planes of EW extensional normal faulting aftershocks. Along the easternmost Karadere-Düzce segment we identify the down-dip extension of the Karadere fault that hosted about 1 m of right-lateral coseismic slip. At the easternmost rupture we correlate a cloud-type distribution of seismic activity with the largest aftershocks in this area, a subevent of the Izmit mainshock and the Düzce mainshock that all have an almost identical focal mechanism. This part of the NAFZ is interpreted as a classical example of a seismic barrier along the fault

    Source parameters and seismic moment-magnitude scaling for Northwestern Turkey

    Get PDF
    Abstract The source parameters of 523 aftershocks (0.5 ML 5.9) of the 1999 Kocaeli earthquake are determined by performing a two-step spectral fitting procedure. The source spectrum, corrected for both site and propagation effects, is described in terms of a standard x-square model multiplied by an exponential term of frequency. The latter term is introduced to estimate the high-frequency (f 12 Hz) fall-off of the acceleration source spectra by computing the j parameter. The seismic moments obtained range between 1.05 1014 and 2.41 1017 N m, whereas the Brune stress drops are between 0.002 and 40 MPa. The j value varies between 0.00 and 0.08 sec, indicating a decay of the acceleration level at the higher frequency part of the spectrum greater than that assumed by the x 2 model. Both the stress drop and the j parameter show the tendency of increasing with aftershock magnitude. No evidence of self-similarity breakdown is observed between the source radius and M0. Finally, both the seismic moment and the moment magnitude are compared with the local magnitude to derive new moment–magnitude relationships for the area

    Seismic methods in mineral exploration and mine planning - Introduction

    Get PDF

    ML scale in Northwestern Turkey from 1999 Izmit aftershock: updates

    Get PDF
    Abstract We present an update of the local magnitude scale previously calibrated for northwestern Turkey by Baumbach et al. (2003). The path coverage in the westernmost part of the analyzed area has been increased, as well as the number of amplitudes for distance greater than 110 km. Furthermore, a set of recordings from accelerometric stations operated by the Kandilli Observatory and Earthquake Research Institute (KOERI) has been merged with the recordings by the Sapanca-Bolu and German Task Force seismological networks. In all, 4047 recordings from 528 earthquakes recorded by 31 seismometers and 23 accelerometers are considered to calibrate the local magnitude scale over a hypocentral distance range from 10 to 190 km. By analyzing the unit covariance matrix and the resolution matrix, we show how the source-to-station geometries of the seismic and strong-motion networks affect the uncertainties of the computed station corrections, attenuation coefficients, and magnitudes. The assumptions made concerning the reference station correction, and the change in the amplification for the Wood–Anderson torsion seismograph from 2800 to 2080 (Uhrhammer and Collins, 1990) introduced an offset of about 0.34 in the magnitudes with respect to Baumbach et al. (2003), with the updated local magnitude scale ranges from 0.50 to 5.91. The distribution of the residuals with distance confirms that the extension of both the magnitude and distance ranges and the improved path coverage have preserved the high quality that characterized the data set analyzed by Baumbach et al. (2003)

    ML scale in Northwestern Turkey from 1999 Izmit aftershocks: updates

    Get PDF
    We present an update of the local magnitude scale previously calibrated for Northwestern Turkey by Baumbach et al. (2003). The path coverage in the westernmost part of the analysed area has been increased, as well as the number of amplitudes for distance greater than 110 km. Furthermore, a set of recordings from accelerometric stations operated by the Kandilli Observatory and Earthquake Research Institute (KOERI) has been merged with the recordings by the Sapanca-Bolu and GermanTaskForce seismological networks. In all, 4047 recordings from 528 earthquakes recorded by 31 seismometers and 23 accelerometers are considered to calibrate the local magnitude scale over a hypocentral distance range from 10 to 190 km. By analyzing the unit covariance matrix and the resolution matrix, we show how the source-to-station geometries of the seismic and strong motion networks affect the uncertainties of the computed station corrections, attenuation coefficients, and magnitudes. The assumptions made concerning the reference station correction, and the change in the amplification for the Wood-Anderson torsion seismograph from 2800 to 2080 (Uhrhammer and Collins, 1990) introduced an offset of about 0.34 in the magnitudes with respect to Baumbach et al. (2003), with the updated local magnitude scale ranges from 0.50 to 5.91. The distribution of the residuals with distance confirms that the extension of both the magnitude and distance ranges and the improved path coverage have preserved the high quality that characterized the data set analyzed by Baumbach et al. (2003)

    Physico-chemical behaviour of underground waters after the october 1, 1995 Dinar earthquake, SW Turkey

    Get PDF
    On the evening of October 1, 1995, a MS46.1 earthquake destroyed the city of Dinar, SW Turkey. Within 48 hours after the main shock, a team of the German Earthquake Task Force arrived in the area to investigate possible earthquake-related changes in the physico-chemical composition of shallow and deep groundwaters. A mapping was performed to characterise different groundwater types and a continuously monitoring station was installed within the geothermal field of Afyon. Repeated measurements, performed 1, 6, 12 and 18 months after the event, reveal post-seismic changes in water discharge, water temperature, and conductivity. We will focus on the changes of spring water discharge observed in the vicinity of the epicentre. In the first month after the earthquake the groundwater discharge increased at springs located within the down-thrown block, whereas a slight decrease was observed at sites on the hanging wall

    Seismic methods in mineral exploration and mine planning: A general overview of past and present case histories and a look into the future.

    Get PDF
    Due to high metal prices and increased difficulties in finding shallower deposits, the exploration for and exploitation of mineral resources is expected to move to greater depths. Consequently, seismic methods will become a more important tool to help unravel structures hosting mineral deposits at great depth for mine planning and exploration. These methods also can be used with varying degrees of success to directly target mineral deposits at depth. We review important contributions that have been made in developing these techniques for the mining industry with focus on four main regions: Australia, Europe, Canada, and South Africa. A wide range of case studies are covered, including some that are published in the special issue accompanying this article, from surface to borehole seismic methods, as well as petrophysical data and seismic modeling of mineral deposits. At present, high-resolution 2D surveys mostly are performed in mining areas, but there is a general increasing trend in the use of 3D seismic methods, especially in mature mining camps
    corecore