19 research outputs found

    Dating Clinopyroxene Phenocrysts in Submarine Basalts Using ^(40)Ar/^(39)Ar Geochronology

    Get PDF
    Dating submarine basalts using ^(40)Ar/^(39)Ar geochronology is often hindered by a lack of potassium‐bearing phenocrystic phases and severe alteration in the groundmass. Clinopyroxene is a common phenocrystic phase in seafloor basalts and is highly resistive to low‐temperature alteration. Here we show that clinopyroxene phenocrysts separated from marine basalts are a viable phase for ^(40)Ar/^(39)Ar incremental heating age determinations. We provide results from a pilot study comprising 16 age experiments from nine clinopyroxene separates, five of which from samples with dated coeval phases. The clinopyroxene ages range from 11.5 to 112 Ma with relatively high uncertainties (ranging from 0.8% to 7.1%; median of 1.9%) compared to more traditional phases. The clinopyroxene age plateaus form at low to moderate temperature steps and are characterized by relatively elevated K/Ca of 0.002–0.4, suggesting that other K‐bearing phases hosted within the clinopyroxene are likely degassing to yield the ^(40)Ar/^(39)Ar age information. There are three possible origins for the K and corresponding ^(40)Ar* including films of trapped melt/nanomineral inclusions along grain defects, secondary melt inclusion bands, or variations in degassing behaviors between lower and higher crystalline Ca pyroxene phases. Regardless of the source of the K, the age determinations are successful with 75% of the experiments producing long plateaus (>60% ^(39)Ar released) with mean square of the weighted deviations ranging from 0.6 to 1.5 and probability of fit values >0.05. We conclude that clinopyroxene dating by the ^(40)Ar/^(39)Ar method has the potential to provide a wealth of information for previously undated, altered seafloor lithologies and continental equivalents

    Filling Critical Gaps in the Space-Time Record of High Lava Plains and co-Columbia River Basalt Group rhyolite Volcanism

    Get PDF
    Miocene rhyolitic volcanism of eastern Oregon, USA, can be divided into two main episodes. Mantle plume upwelling is thought to have generated Columbia River Basalt Group (CRBG) lavas and coeval \u3e16.5−15 Ma silicic volcanism trending north−south from northeast Oregon to northern Nevada. Rhyolite volcanism of the 12−0 Ma High Lava Plains province has been ascribed to either buoyancy-driven westward plume spreading or to slab rollback and mantle convection spanning from southeast Oregon to Newberry Volcano to the west. The apparent ca. 15−12 Ma eruptive hiatus suggests that rhyolites of these provinces were a product of separate processes, yet this gap was based on incomplete data. The lack of data on ∌33 of the total ∌50 rhyolitic eruptive centers in the area where the two provinces overlap (117−119°W, 43−44°N) yields only tenuous relationships between these two provinces

    Dating Clinopyroxene Phenocrysts in Submarine Basalts Using ^(40)Ar/^(39)Ar Geochronology

    Get PDF
    Dating submarine basalts using ^(40)Ar/^(39)Ar geochronology is often hindered by a lack of potassium‐bearing phenocrystic phases and severe alteration in the groundmass. Clinopyroxene is a common phenocrystic phase in seafloor basalts and is highly resistive to low‐temperature alteration. Here we show that clinopyroxene phenocrysts separated from marine basalts are a viable phase for ^(40)Ar/^(39)Ar incremental heating age determinations. We provide results from a pilot study comprising 16 age experiments from nine clinopyroxene separates, five of which from samples with dated coeval phases. The clinopyroxene ages range from 11.5 to 112 Ma with relatively high uncertainties (ranging from 0.8% to 7.1%; median of 1.9%) compared to more traditional phases. The clinopyroxene age plateaus form at low to moderate temperature steps and are characterized by relatively elevated K/Ca of 0.002–0.4, suggesting that other K‐bearing phases hosted within the clinopyroxene are likely degassing to yield the ^(40)Ar/^(39)Ar age information. There are three possible origins for the K and corresponding ^(40)Ar* including films of trapped melt/nanomineral inclusions along grain defects, secondary melt inclusion bands, or variations in degassing behaviors between lower and higher crystalline Ca pyroxene phases. Regardless of the source of the K, the age determinations are successful with 75% of the experiments producing long plateaus (>60% ^(39)Ar released) with mean square of the weighted deviations ranging from 0.6 to 1.5 and probability of fit values >0.05. We conclude that clinopyroxene dating by the ^(40)Ar/^(39)Ar method has the potential to provide a wealth of information for previously undated, altered seafloor lithologies and continental equivalents

    Vegetation succession and climate change across the Plio-Pleistocene transition in eastern Azerbaijan, central Eurasia (2.77–2.45 Ma)

    Get PDF
    The Plio-Pleistocene transition marked a key moment in global climate history, characterised by the onset of major glaciations in the Northern Hemisphere. The palaeoenvironmental history of the Plio-Pleistocene transition is not well known for the Caspian Sea region, despite its importance for global climate dynamics. Here we present an independently 40Ar/39Ar dated, high-resolution terrestrial palynological record spanning the Plio-Pleistocene boundary based on a lacustrine-marine sedimentary sequence from eastern Azerbaijan. Despite complex pollen transport pathways and the proximity of closely stacked mountain vegetation belts in the Greater and Lesser Caucasus, the record shows that regional vegetation responded to Milankovitch forced glacial-interglacial cycles, tentatively correlated with global climatic records spanning MIS G8 to 98 (∌2.77–2.45 Ma). The persistence of mesophilous forests during glacial times indicates that some settings in the South Caspian Basin acted as glacial refugia, and that vegetation response to glaciations was muted by increased moisture availability, linked to Caspian transgression. The palynological record shows a relationship with global [delta]18O stacks and specifically to the obliquity record. We anticipate that precise correlation with the global climatostratigraphic timescale will allow better understanding of the nature and timing of important transgressive events in the Caspian Sea and their relevance on a global scale

    Reshuffling the Columbia River Basalt chronology — Picture Gorge Basalt, the Earliest- and Longest-erupting Formation

    Get PDF
    The Columbia River Basalt Group (CRBG) is the world’s youngest continental flood basalt province, presumably sourced from the deep-seated plume that currently resides underneath Yellowstone National Park in the northwestern United States. The earliest-erupted basalts from this province aid in understanding and modeling plume impingement and the subsequent evolution of basaltic volcanism. We explore the Picture Gorge Basalt (PGB) formation of the CRBG, and discuss the location and geochemical significance in a temporal context of early CRBG magmatism. We report new ARGUS-VI multicollector 40Ar/39Ar incremental heating ages from known PGB localities and additional outcrops that we can geochemically classify as PGB. These 40Ar/39Ar ages range between 17.23 ± 0.04 Ma and 16.06 ± 0.14 Ma, indicating that PGB erupted earlier and for longer than other CRBG main-phase units. These ages illustrate that volcanism initiated over a broad area in the center of the province, and the geochemistry of these early lavas reflects a mantle source that is distinct both spatially and temporally. Combining ages with the strongest arc-like (but depleted) geochemical signal of PGB among CRBG units indicates that the shallowest metasomatized backarc-like mantle was tapped first and concurrently, with later units (Steens and Imnaha Basalts) showing increased influence of a plume-like source

    The Qixiangzhan eruption, Changbaishan-Tianchi volcano, China/DPRK: new age constraints and their implications

    No full text
    Abstract Zircon double dating (ZDD) of comendite lava reveals an eruption age of 7.0 ± 0.9 ka for the Qixiangzhan eruption (QXZ), Changbaishan-Tianchi volcano, China/DPRK. This age is supported by new 40Ar/39Ar sanidine experiments and a previous age control from charcoal at the base of the QXZ. The revised age supports correlations with distal ash in Eastern China and Central Japan and establishes a significant (estimated at Volcanic Explosivity Index 5+) eruption that may provide a useful Holocene stratigraphic marker in East Asia. The new age indicates that the QXZ lava does not record a ca. 17 ka Hilina Pali/Tianchi geomagnetic field excursion but rather a heretofore unrecognized younger Holocene excursion at ca. 7–8 ka. Comparison between U–Th zircon crystallization and ZDD as well as 40Ar/39Ar sanidine ages indicates a protracted period of accumulation of the QXZ magma that extends from ca. 18 ka to the eruption age. This connotes an eruption that mixed remobilized early formed crystals (antecrysts) from prior stages of magma accumulation with crystals formed near the time of eruption. Based on these results, a recurrence rate of ca. 7–8 ka for the Changbaishan-Tianchi magma system is found over the last two major eruption cycles

    Thermochemical anomalies in the upper mantle control Gakkel Ridge accretion

    No full text
    Despite progress in understanding seafloor accretion at ultraslow spreading ridges, the ultimate driving force is still unknown. Here we use 40Ar/39Ar isotopic dating of mid-ocean ridge basalts recovered at variable distances from the axis of the Gakkel Ridge to provide new constraints on the spatial and temporal distribution of volcanic eruptions at various sections of an ultraslow spreading ridge. Our age data show that magmatic-dominated sections of the Gakkel Ridge spread at a steady rate of ~11.1 ± 0.9 mm/yr whereas amagmatic sections have a more widely distributed melt supply yielding ambiguous spreading rate information. These variations in spreading rate and crustal accretion correlate with locations of hotter thermo-chemical anomalies in the asthenosphere beneath the ridge. We conclude therefore that seafloor generation in ultra-slow spreading centres broadly reflects the distribution of thermochemical anomalies in the upper mantle

    Late Miocene and Early Pliocene coastal deposits from the Canary Islands: New records and paleoclimatic significance

    No full text
    The Canary Islands offer an outstanding context for paleoclimatic studies because their volcanic nature and the presence of datable lava flows, their antiquity, the existence of marine deposits and their location in the NE Atlantic. New records of Miocene and Pliocene coastal deposits are registered in the eastern Canary Islands, 100 km off the NW African coast. Late Miocene marine deposits are conglomerates and sandstones assigned to the Tortonian through a new 40Ar/39Ar age (9.60 ± 0.05 Ma) of an overlying lava flow at the Janubio site in Lanzarote Island. These deposits contain littoral-intertidal and intertropical genera of fossils, e.g. the gastropod Nerita and the coral Siderastrea, they are almost horizontal and were elevated up to 36 m in height by regional or local tectonics, yielding a relatively low rate of uplift of ~3.75 m/Ma. Furthermore, Early Pliocene coastal deposits studied, are mainly marine conglomerates and sandstones and derived aeolianites that are spread over the south of Lanzarote and the west of the Jandía peninsula of Fuerteventura Island. No associated lava flow permits their dating, but they contain marine fossils of littoral and intertropical genera, as the gastropods Nerita and Persististrombus and the coral Siderastrea. They are all inclined toward the coast in the form of a large layer elevated up to 70 m a.s.l., in a surrounding geological environment with gypsum and aeolianites that indicate a eustatic sea-level fall with a regressive effect in the area. These deposits, previously attributed to the Quaternary, are now assigned to the Zanclean because of its similarity in lithology, appearance and fossil content with deposits in western Fuerteventura and NE Gran Canaria. The nearby existence of paleosols with particular structures indicates the start of climatic seasonality in the region; and the only possible time interval in a global context (record of deep-sea oxygen isotopes and sea-level history) fits in the most notable Pliocene global climatic change (~4 Ma) that is registered in the Canary Islands by mean of these coastal and aeolian deposits

    Two-stage bimodal volcanism in a Late Cretaceous arc/back-arc setting, NE Turkey: Constraints from volcano-stratigraphy, zircon U–Pb and 40Ar/39Ar geochronology and whole-rock elemental and Sr-Nd-Pb isotope geochemistry

    No full text
    © 2023 Elsevier B.V.The eastern Blacksea magmatic arc (EBMA) in the eastern Sakarya Zone (ESZ) provides an excellent opportunity to investigate birth of an extensional intra-arc and back-arc settings in the Late Cretaceous over the Early Cretaceous northern passive margin of the Neotethys Ocean. Volcano-stratigraphy clearly shows that the Late Cretaceous volcanic activity of the EBMA occurred in two major phases. Bimodality, characterized by mafic/basaltic rocks at the base and felsic/silicic types on top of it, is a typical feature of the lower (LVS) and upper (UVS) volcanic successions in the Giresun region of the ESZ. U–Pb and Ar–Ar ages support the volcanic succession as two-stage (LVS: ca. 92–85 and UVS: ca. 83–67 Ma) bimodal volcanism. Both the volcanic successions are represented by similar rock types consisting of tholeiitic to calc-alkaline basalt-basaltic andesites and calc-alkaline to shoshonitic dacite-rhyolites. Basaltic (M1- and M2-series) and felsic/silicic (F1- and F2-series) samples of the LVS and UVS have an arc-like signature with enriched large ion lithophile elements (LILEs) and light rare earth elements (LREEs) and depleted high field strength elements (HFSEs). Also, the felsic/silicic samples of the F1- and F2-series show prominent negative Sr and Eu anomalies (Eu/Eu* = 0.4 to 0.9), suggesting that plagioclase fractionation played a key role on the evolution of both felsic series. Bimodal rock series in two phases have a wide range of 87Sr/86Sr(i) (0.7048–0.7075) and 143Nd/144Nd(i) (0.5123–0.5127) ratios with variable ɛNd(i) values of −3.8 to +3.0. 206Pb/204Pb(i), 207Pb/204Pb(i) and 208Pb/204Pb(i) isotope ratios of the Giresun volcanic rocks vary in the range of 17.97–18.52, 15.55–15.65 and 37.53–38.56, respectively. Geochemical and isotopic data suggest that the parental magma of the M1-basaltic rocks were probably derived from a shallow (spinel-bearing) mantle metasomatized by slab/sediment-derived fluids. In contrast, the M2-basalts seem to have been originated from a deeper mantle source (spinel-garnet transition zone) enriched by slab/sediment-derived fluids and hydrous melts (bulk sediment) metasomatism with some contributions of lower/upper crustal materials. The least evolved basaltic samples in two phases are consistent with moderate (∌10–15%) to high degree (∌20–30%) partial melting of the metasomatized mantle. The silicic melts of the F1- and F2-rocks series, on the other hand, were likely derived from melting of lower crustal materials consisting of meta-basalts/andesites and lesser amount of meta-sediments. Subsequently, these melts experienced FC ± AFC and mixing processes during their ascent and emplacement to generate high-silica (rhyolitic) melts. Our data, combined with previous studies, suggest that two-stage bimodal volcanic rocks of the Late Cretaceous in the ESZ were formed in the transition from an extensional continental intra-arc to a back-arc setting during the northward subduction of the northern branch of Neotethys Ocean
    corecore