57 research outputs found

    Silvicultural Interventions Drive the Changes in Soil Organic Carbon in Romanian Forests According to Two Model Simulations

    Get PDF
    We investigated the effects of forest management on the carbon (C) dynamics in Romanian forest soils, using two model simulations: CBM-CFS3 and Yasso15. Default parametrization of the models and harmonized litterfall simulated by CBM provided satisfactory results when compared to observed data from National Forest Inventory (NFI). We explored a stratification approach to investigate the improvement of soil C prediction. For stratification on forest types only, the NRMSE (i.e., normalized RMSE of simulated vs. NFI) was approximately 26%, for both models; the NRMSE values reduced to 13% when stratification was done based on climate only. Assuming the continuation of the current forest management practices for a period of 50 years, both models simulated a very small C sink during simulation period (0.05 MgC ha(-1) yr(-1)). Yet, a change towards extensive forest management practices would yield a constant, minor accumulation of soil C, while more intensive practices would yield a constant, minor loss of soil C. For the maximum wood supply scenario (entire volume increment is removed by silvicultural interventions during the simulated period) Yasso15 resulted in larger emissions (-0.3 MgC ha(-1) yr(-1)) than CBM (-0.1 MgC ha(-1) yr(-1)). Under 'no interventions' scenario, both models simulated a stable accumulation of C which was, nevertheless, larger in Yasso15 (0.35 MgC ha(-1) yr(-1)) compared to CBM-CSF (0.18 MgC ha(-1) yr(-1)). The simulation of C stock change showed a strong "start-up" effect during the first decade of the simulation, for both models, explained by the difference in litterfall applied to each scenario compared to the spinoff scenario. Stratification at regional scale based on climate and forest types, represented a reasonable spatial stratification, that improved the prediction of soil C stock and stock change.Peer reviewe

    Genetic diversity of dinitrogen-fixing bacterial communities in soil amended with olive husks

    Get PDF
    The industrial production of olive oil is accompanied by the accumulation of large quantities of by-products from the olive milling industry that are commonly dispersed as fertilisers, which are nowadays suspected to have potential toxic effects on is omicroflora. The aim of this work has been the investigation of the genetic diversity of bacterial communities present in soil treated with olive husks focusing on the dinitrogen-fixing bacteria.nifH genes were amplified from total soil DNA using universal primers, cloned and typed by restriction analysis and sequencing of representative haplotypes. On the same samples, DGGE analysis on amplified 16S rDNA was performed aiming at monitoring modifications in the total community pattern. Results showed a high genetic diversity ofnifH genes within the community, which was well in agreement with the total community profiles obtained by DGGE on 16SrDNA. Most of thenifH gene fragments (19 out of 32) were found to be similar to sequences related with clostridia

    SNP Discovery and Chromosome Anchoring Provide the First Physically-Anchored Hexaploid Oat Map and Reveal Synteny with Model Species

    Get PDF
    A physically anchored consensus map is foundational to modern genomics research; however, construction of such a map in oat (Avena sativa L., 2n = 6x = 42) has been hindered by the size and complexity of the genome, the scarcity of robust molecular markers, and the lack of aneuploid stocks. Resources developed in this study include a modified SNP discovery method for complex genomes, a diverse set of oat SNP markers, and a novel chromosome-deficient SNP anchoring strategy. These resources were applied to build the first complete, physically-anchored consensus map of hexaploid oat. Approximately 11,000 high-confidence in silico SNPs were discovered based on nine million inter-varietal sequence reads of genomic and cDNA origin. GoldenGate genotyping of 3,072 SNP assays yielded 1,311 robust markers, of which 985 were mapped in 390 recombinant-inbred lines from six bi-parental mapping populations ranging in size from 49 to 97 progeny. The consensus map included 985 SNPs and 68 previously-published markers, resolving 21 linkage groups with a total map distance of 1,838.8 cM. Consensus linkage groups were assigned to 21 chromosomes using SNP deletion analysis of chromosome-deficient monosomic hybrid stocks. Alignments with sequenced genomes of rice and Brachypodium provide evidence for extensive conservation of genomic regions, and renewed encouragement for orthology-based genomic discovery in this important hexaploid species. These results also provide a framework for high-resolution genetic analysis in oat, and a model for marker development and map construction in other species with complex genomes and limited resources

    A verified genomic reference sample for assessing performance of cancer panels detecting small variants of low allele frequency

    Get PDF
    BackgroundOncopanel genomic testing, which identifies important somatic variants, is increasingly common in medical practice and especially in clinical trials. Currently, there is a paucity of reliable genomic reference samples having a suitably large number of pre-identified variants for properly assessing oncopanel assay analytical quality and performance. The FDA-led Sequencing and Quality Control Phase 2 (SEQC2) consortium analyze ten diverse cancer cell lines individually and their pool, termed Sample A, to develop a reference sample with suitably large numbers of coding positions with known (variant) positives and negatives for properly evaluating oncopanel analytical performance.ResultsIn reference Sample A, we identify more than 40,000 variants down to 1% allele frequency with more than 25,000 variants having less than 20% allele frequency with 1653 variants in COSMIC-related genes. This is 5-100x more than existing commercially available samples. We also identify an unprecedented number of negative positions in coding regions, allowing statistical rigor in assessing limit-of-detection, sensitivity, and precision. Over 300 loci are randomly selected and independently verified via droplet digital PCR with 100% concordance. Agilent normal reference Sample B can be admixed with Sample A to create new samples with a similar number of known variants at much lower allele frequency than what exists in Sample A natively, including known variants having allele frequency of 0.02%, a range suitable for assessing liquid biopsy panels.ConclusionThese new reference samples and their admixtures provide superior capability for performing oncopanel quality control, analytical accuracy, and validation for small to large oncopanels and liquid biopsy assays.Peer reviewe

    Assessing sources of inconsistencies in genotypes and their effects on genome-wide association studies with HapMap samples

    Get PDF
    The discordance in results of independent genome-wide association studies (GWAS) indicates the potential for Type I and Type II errors. We assessed the repeatibility of current Affymetrix technologies that support GWAS. Reasonable reproducibility was observed for both raw intensity and the genotypes/copy number variants. We also assessed consistencies between different SNP arrays and between genotype calling algorithms. We observed that the inconsistency in genotypes was generally small at the specimen level. To further examine whether the differences from genotyping and genotype calling are possible sources of variation in GWAS results, an association analysis was applied to compare the associated SNPs. We observed that the inconsistency in genotypes not only propagated to the association analysis, but was amplified in the associated SNPs. Our studies show that inconsistencies between SNP arrays and between genotype calling algorithms are potential sources for the lack of reproducibility in GWAS results
    • …
    corecore