2,156 research outputs found

    Exciton-phonon scattering and photo-excitation dynamics in J-aggregate microcavities

    Full text link
    We have developed a model accounting for the photo-excitation dynamics and the photoluminescence of strongly coupled J-aggregate microcavities. Our model is based on a description of the J-aggregate film as a disordered Frenkel exciton system in which relaxation occurs due to the presence of a thermal bath of molecular vibrations. In a strongly coupled microcavity exciton-polaritons are formed, mixing superradiant excitons and cavity photons. The calculation of the microcavity steady-state photoluminescence, following a CW non resonant pumping, is carried out. The experimental photoluminescence intensity ratio between upper and lower polariton branches is accurately reproduced. In particular both thermal activation of the photoluminescence intensity ratio and its Rabi splitting dependence are a consequence of the bottleneck in the relaxation, occurring at the bottom of the excitonic reservoir. The effects due to radiative channels of decay of excitons and to the presence of a paritticular set of discrete optical molecular vibrations active in relaxation processes are investigared.Comment: 8 pages, 6 figure

    Is “Unconsummated Marriage” still an appropriate term? A snapshot of reality

    Get PDF
    The most shared definition of Unconsummated Marriage (UM) refers to “the failure to perform successful sexual intercourse at the beginning of the marriage. UM usually occurs in the first few nights of marriage and so it is frequently referred to as “honeymoon impotence” or “wedding night impotence”. In the Middle-Eastern (MES) and Western (WS) societies, sexuality follows different patterns in terms of meaning and rules. Moreover the evolution of societies all around the world created new contexts and kinds of relationship. This could hamper a correct taxonomy of such sexual dysfunction where a social variable seems crucial. Aim: To analyze and review data on UM all around the world, to understand if in different societies it refers to the same situation. Method: A review of published literature on UM from 1970 to date, was conducted. Results: Substantial difference emerged from MES to WS. In MES, sexuality is allowable only in marriage, while in WS sexuality and relationship are not strongly linked. This could suggest that the term “marriage” is unable to cover the phenomenon in such different countries. Moreover, the average time before the consultation, causal attribution and prevalence are very different in Western and Middle Eastern countries. Conclusion: We found that the term “first attempts dysfunction” could be better used to describe male, female or both difficulties related to ignorance about sexuality or state/performance anxiety. On the other hand over the individual category of sexual dysfunctions, we suggest a new term as “Unconsummated relationship”, where individual difficulties toward sexuality are involved creating a couple’s dysfunction. Keywords: Unconsummated marriage; Honeymoon impotence; White marriage; Vaginismus; Infertilit

    Simulation of hydrogenated graphene Field-Effect Transistors through a multiscale approach

    Full text link
    In this work, we present a performance analysis of Field Effect Transistors based on recently fabricated 100% hydrogenated graphene (the so-called graphane) and theoretically predicted semi-hydrogenated graphene (i.e. graphone). The approach is based on accurate calculations of the energy bands by means of GW approximation, subsequently fitted with a three-nearest neighbor (3NN) sp3 tight-binding Hamiltonian, and finally used to compute ballistic transport in transistors based on functionalized graphene. Due to the large energy gap, the proposed devices have many of the advantages provided by one-dimensional graphene nanoribbon FETs, such as large Ion and Ion/Ioff ratios, reduced band-to-band tunneling, without the corresponding disadvantages in terms of prohibitive lithography and patterning requirements for circuit integration

    Geological Criteria for Evaluating seismicity revisited: Forty Years of Paleoseismic Investigations and the Natural Record of Past Earthquakes

    Get PDF
    The identifi cation of individual past earthquakes and their characterization in time and space, as well as in magnitude, can be approached in many different ways with a large variety of methods and techniques, using a wide spectrum of objects and features. We revise the stratigraphic and geomorphic evidence currently used in the study of paleoseismicity, after more than three decades since the work by Allen (1975), which was arguably the fi rst critical overview in the fi eld of earthquake geology. Natural objects or geomarkers suitable for paleoseismic analyses are essentially preserved in the sediments, and in a broader sense, in the geologic record. Therefore, the study of these features requires the involvement of geoscientists, but very frequently it is a multidisciplinary effort. The constructed environment and heritage, which typically are the focus of archaeoseismology and macroseismology, here are left aside. The geomarkers suitable to paleoseismic assessment can be grouped based on their physical relation to the earthquake\u2019s causative fault. If directly associated with the fault surface rupture, these objects are known as direct or on-fault features (primary effects in the Environmental Seismic Intensity [ESI] 2007 scale). Conversely, those indicators not in direct contact with the fault plane are known as indirect or off-fault evidence (secondary effects in the ESI 2007 scale). This second class of evidence can be subdivided into three types or subclasses: type A, which encompasses seismically induced effects, including soft-sediment deformation (soil liquefaction, mud diapirism), mass movements (including slumps), broken (disturbed) speleothems, fallen precarious rocks, shattered basement rocks, and marks of degassing (pockmarks, mud volcanoes); type B, which consists of remobilized and redeposited sediments (turbidites, homogenites, and tsunamites) and transported rock fragments (erratic blocks); and type C, entailing regional markers of uplift or subsidence (such as reef tracts, microatolls, terrace risers, river channels, and in some cases progressive unconformities). The fi rst subclass of objects (type A) is generated by seismic shaking. The second subclass (type B) relates either to water bodies set in motion by the earthquake (for the sediments and erratic blocks) or to earthquake shaking; in a general way, they all relate to wave propagation through different materials. The third subclass (type C) is mostly related to the tectonic deformation itself and can range from local (next to the causative fault) to regional scale. The natural exposure of the paleoseismic objects\u2014which necessarily conditions the paleoseismic approach employed\u2014is largely controlled by the geodynamic setting. For instance, oceanic subduction zones are mostly submarine, while collisional settings tend to occur in continental environments. Divergent and wrenching margins may occur anywhere, in any marine, transitional, or continental environment. Despite the fact that most past subduction earthquakes have to be assessed through indirect evidence, paleoseismic analyses of this category of events have made dramatic progress recently, owing to the increasingly catastrophic impact that they have on human society

    What is a Gene? A Two Sided View

    Get PDF
    The need to account for all currently available experimental observations concerning the gene nature, has reshaped the concept of gene turning it from the essentially mechanistic unit, predominant during the '70s, into a quite abstract open and generalized entity, whose contour appears less defined as compared to the past. Here we propose the essence of the gene to be considered double faced. In this respect genotypic and phenotypic entities of a gene would coexist and mix reciprocally. This harmonizes present knowledge with current definitions and predisposes for remodelling of our thinking as a consequence of future discoveries. A two sided view of the gene also allows to combine the genetic and epigenetic aspects in a unique solution, being structural and functional at the same time and simultaneously able to include the different levels in an overlapping unicum

    Helical edge states in multiple topological mass domains

    Get PDF
    The two-dimensional topological insulating phase has been experimentally discovered in HgTe quantum wells (QWs). The low-energy physics of two-dimensional topological insulators (TIs) is described by the Bernevig-Hughes-Zhang (BHZ) model, where the realization of a topological or a normal insulating phase depends on the Dirac mass being negative or positive, respectively. We solve the BHZ model for a mass domain configuration, analyzing the effects on the edge modes of a finite Dirac mass in the normal insulating region (soft-wall boundary condition). We show that at a boundary between a TI and a normal insulator (NI), the Dirac point of the edge states appearing at the interface strongly depends on the ratio between the Dirac masses in the two regions. We also consider the case of multiple boundaries such as NI/TI/NI, TI/NI/TI and NI/TI/NI/TI.Comment: 11 pages, 15 figure

    Helical edge states in multiple topological mass domains

    Get PDF
    The two-dimensional topological insulating phase has been experimentally discovered in HgTe quantum wells (QWs). The low-energy physics of two-dimensional topological insulators (TIs) is described by the Bernevig-Hughes-Zhang (BHZ) model, where the realization of a topological or a normal insulating phase depends on the Dirac mass being negative or positive, respectively. We solve the BHZ model for a mass domain configuration, analyzing the effects on the edge modes of a finite Dirac mass in the normal insulating region (soft-wall boundary condition). We show that at a boundary between a TI and a normal insulator (NI), the Dirac point of the edge states appearing at the interface strongly depends on the ratio between the Dirac masses in the two regions. We also consider the case of multiple boundaries such as NI/TI/NI, TI/NI/TI and NI/TI/NI/TI.Comment: 11 pages, 15 figure

    Exact states and spectra of vibrationally dressed polaritons

    Get PDF
    Strong coupling between light and matter is possible with a variety of organic materials. In contrast to the simpler inorganic case, organic materials often have a complicated spectrum, with vibrationally dressed electronic transitions. Strong coupling to light competes with this vibrational dressing and, if strong enough, can suppress the entanglement between electronic and vibrational degrees of freedom. By exploiting symmetries, we can perform exact numerical diagonalization to find the polaritonic states for intermediate numbers of molecules and use these to define and validate accurate expressions for the lower polariton states and strong-coupling spectrum in the thermodynamic limit. Using this approach, we find that vibrational decoupling occurs as a sharp transition above a critical matter-light coupling strength. We also demonstrate how the polariton spectrum evolves with the number of molecules, recovering classical linear optics results only at large N

    Variable fault tip propagation rates affected by near-surface lithology and implications for fault displacement hazard assessment

    Get PDF
    The fabric of reverse fault zones close to the surface is usually partitioned in between a narrow discrete rupture zone and a more distributed one, where folding is predominant. This makes quite challenging the adoption of proper setbacks in surface rupture hazard studies for critical facilities or microzoning. Some of the parameters controlling fault zone fabric are related to mechanics of near-surface geology (lithology, overburden thickness, cohesion and water content) whose interaction is complex and only partially understood. Nevertheless, these can be seldom measured or derived. Kinematic models, conversely, express such an interaction of complex variables as simple synthetic parameters, such as the amount of upward propagation of the fault tip for unit of slip, usually referred to as the P/S ratio (Propagation on Slip). Here, we discuss results on the trishear kinematic inverse modeling of a contractional fault propagation fold at Monte Netto Hill (Capriano del Colle, N. Italy), observing a two-stage fault and fold growth evolution, marked by a significant shift in the P/S parameter. At this site, exceptional sequence of exposures due to ca. 10 years of quarry excavations allowed to obtain a series of cross-sections across the fault zone. We use this detailed, high-resolution, example as a natural \u201canalogue\u201d for more general, large-scale surface ruptures involving a thick alluvial cover, a very common setting for the siting of critical facilities. During the early stage of displacement, the fault cut through clast-supported fluvial gravels with a high propagation rate (P/S\u202f=\u202f7) and a discrete rupture width. Then, during the latest movements of the thrust, fault tip propagation slowed down to P/S\u202f 48\u202f2.9, as the fault started cutting through several stacked bodies of clays and silty clays, pedogenized aeolian silts and overbank deposits, causing a pronounced folding of the layers over a wider deformation zone. These results strongly suggest that lithological changes in the underlying shallow stratigraphy, common in an alluvial plain depositional setting, would significantly affect the potential for surface faulting across the same tectonic structure, with relevant implications in the fault displacement hazard assessment
    • 

    corecore