1,257 research outputs found
Institutional Variables, Collegial Relationships, and Occupational Satisfaction: Testing the Conceptual Framework of Faculty Job Satisfaction Among Counselor Educators
Occupational satisfaction is the extent to which individuals are fulfilled by their employment. The Conceptual Framework of Faculty Job Satisfaction (Hagedorn, 2000) describes how aspects of work impact occupational satisfaction, yet researchers have not previously used this model with counselor educators. This study investigated the applicability of the model, as well as the impact of institutional and interpersonal variables, on a sample of 296 counselor educators (26.86% response rate). Findings suggested the model predicted over half of the variance in occupational satisfaction. Significant predictors of satisfaction included work itself, responsibility, recognition, salary, collegial relationships, administration, and climate. Counselor educator occupational satisfaction was also predicted by relational variables, including involvement in a mentoring relationship, satisfaction with colleagues, and satisfaction with the department chair. Individuals involved in a mentoring relationship reported a more positive departmental climate and greater scholarship engagement than peers without a mentor or mentee. Findings suggested no difference in occupational satisfaction based on CACREP accreditation status or union status and a slight difference based on teaching method. Implications for future training and research are discussed
UV exposure causes energy trade-offs leading to increased chytrid fungus susceptibility in green tree frog larvae
Levels of ultraviolet (UV) radiation have increased in many parts of the world due to the anthropogenic destruction of the ozone layer. UV radiation is a potent immunosuppressant and can increase the susceptibility of animal hosts to pathogens. UV radiation can directly alter immune function via immunosuppression and photoimmunotolerance; however, UV may also influence pathogen defences by affecting the distribution of energy resources among competing physiological processes. Both defence against UV damage and repair of incurred damage, as well as the maintenance of immune defences and responding to an immune challenge, are energetically expensive. These competing demands for finite energy resources could trade off against one another, resulting in sub-optimal performance in one or both processes. We examined the potential for a disease-related energy trade-off in green tree frog (Litoria caerulea) larvae. Larvae were reared under high- or low-UV conditions for 12 weeks during which time we measured growth rates, metabolic rate and susceptibility to the amphibian fungal pathogen, Batrachochytrium dendrobatidis (Bd). We found that larvae exposed to high levels of UV radiation had higher rates of energy expenditure than those exposed to low UV levels; however, UV exposure did not affect growth rates or developmental timings. Larvae exposed to high UV radiation also experienced greater Bd infection rates and carried a higher infection burden than those not exposed to elevated UV radiation. We propose that the increased energetic costs of responding to UV radiation were traded off against immune defences to protect larval growth rates. These findings have important implications for the aetiology of some Bd-associated amphibian declines, particularly in montane environments where Bd infections are most severe and where UV levels are highest
Diurnal, seasonal, and annual trends in atmospheric CO<sub>2</sub> at southwest London during 2000-2012:Wind sector analysis and comparison with Mace Head, Ireland
In-situ measurements of atmospheric CO have been made at Royal Holloway University of London (RHUL) in Egham (EGH), Surrey, UK from 2000 to 2012. The data were linked to the global scale using NOAA-calibrated gases. Measured CO varies on time scales that range from minutes to inter-annual and annual cycles. Seasonality and pollution episodes occur each year. Diurnal cycles vary with daylight and temperature, which influence the biological cycle of CO and the degree of vertical mixing. Anthropogenic emissions of CO dominate the variability during weekdays when transport cycles are greater than at weekends. Seasonal cycles are driven by temporal variations in biological activity and changes in combustion emissions. Maximum mole fractions (μmol/mol) (henceforth referred to by parts per million, ppm) occur in winter, with minima in late summer. The smallest seasonal amplitude observed, peak to trough, was 17.0ppm CO in 2003, whereas the largest amplitude observed was 27.1ppm CO in 2008.Meteorology can strongly modify the CO mole fractions at different time scales. Analysis of eight 45° wind sectors shows that the highest CO mole fractions were recorded from the E and SE sectors. Lowest mole fractions were observed for air masses from the S and SW. Back-trajectory and meteorological analyses of the data confirm that the dominant sources of CO are anthropogenic emissions from London and SE England. The largest annual rate of increase in the annual average of CO, 3.26ppmyr (
A pathogenic skin fungus and sloughing exacerbate cutaneous water loss in amphibians
Batrachochytrium dendrobatidis (Bd) is a pathogenic fungus that causes the cutaneous, infectious disease chytridiomycosis and has been implicated in population declines of numerous anuran species worldwide. Proximate cause of death by chytridiomycosis is asystolic cardiac arrest as a consequence of severe disruption to electrolyte balance. Animals heavily infected with Bd also experience a disruption to their skin sloughing regime, indicating that core functions of the skin, such as water retention, may be severely impacted. This study examined how skin sloughing, body size and Bd infection interact to influence water loss rates in five Australian frog species: Litoria caerulea, Limnodynastes peronii, Lechriodus fletcheri, Limnodynastes tasmaniensis and Platyplectrum ornatum. Rates of water loss more than doubled during sloughing in L. caerulea. During active periods across all species, water loss rates were on average 232% higher in Bd infected frogs than in uninfected frogs. This indicates that dehydration stress may be a significant factor contributing to the morbidity of severely Bd infected anurans, a symptom that is then exacerbated by an increased rate of sloughing. When taking size into account, smaller and/or juvenile anurans may be more at risk from dehydration due to Bd infection, as they lose a greater amount of water and slough more frequently than adults. This may in part explain the higher mortality rates typical for small and juvenile frogs infected with Bd. Understanding how Bd affects the core functions of the skin, including rates of water loss, can improve our predictions of disease outcome in amphibians
Species-Specific Scaling to Define and Conserve the Northern Great Plains Region
Prairie ecosystems are in a continuous state of flux, shifting by processes that include variable weather patterns and climatic conditions, disturbance regimes, and more recently, human-induced modification. Similarly, wildlife resources fluctuate across the landscape as a result of these ever-changing conditions; however, human alterations have increased, removed, and manipulated the ecological processes of the prairie. Specifically, the spatial scales at which humans manage and interact with the landscape are often inconsistent or incompatible with the scales required for the persistence of wildlife populations. Our synthesis demonstrates how the spatial scales at which wildlife in the Northern Great Plains of North America operate have been constrained by human intervention. This process of anthropogenic scaling has affected the decline of many native wildlife populations and in some cases has resulted in the complete extirpation of species from the landscape. We use historical observations and recent quantitative data to describe the primary cause of spatial scale alteration for prairie focal species (i.e. plains bison, pronghorn, grassland birds, Greater Sage-grouse, black-tailed prairie dogs, swift fox, prairie rattlesnakes) using migration, home range, distribution, and dispersal distances as metrics. We then describe the role that spatial scale plays in wildlife management of the prairie landscape from the non-profit, state, and federal perspective and how these entities are managing at the scales of each focal species
Folate reference interval estimation in the Dutch general population
Background: Folate functions as an enzyme co-factor within the one-carbon metabolic pathway, providing key metabolites required for DNA synthesis and methylation. Hence, insufficient intake of folate can negatively affect health. As correct interpretation of folate status is dependent on a well-established reference interval, we set out to perform a new estimation following the restandardization of the Roche folate assay against the international folate standard. Materials and methods: The folate reference interval was estimated using samples obtained from the Dutch population-based Lifelines cohort. The reference interval was estimated using two methods: a nonparametric estimation combined with bootstrap resampling and by fitting the data to a gamma distribution. The lower reference limit was verified in a patient cohort by combined measurement of folate and homocysteine. Results: Dependent on the method used for estimation and in- or exclusion of individuals younger than 21 years of age, the lower reference limit ranged from 6.8 to 7.3 nmol/L and the upper reference limit ranged from 26 to 38.5 nmol/L. Applying a lower reference limit of 7.3 nmol/L resulted in the following percentage of folate deficiencies over a period of 12 months: general practitioner 15.5% (IQR 4.0%), general hospital 12.8% (IQR 5.3%), academic hospital 9.6% (IQR 4.3%). Conclusions: We estimated the folate reference interval in the Dutch general population which is not affected by a folic acid fortification program and verified the obtained lower reference limit by homocysteine measurements. Based on our results, we propose a folate reference interval independent of age of 7.3-38.5 nmol/
“What if There's Something Wrong with Her?”‐How Biomedical Technologies Contribute to Epistemic Injustice in Healthcare
While there is a steadily growing literature on epistemic injustice in healthcare, there are few discussions of the role that biomedical technologies play in harming patients in their capacity as knowers. Through an analysis of newborn and pediatric genetic and genomic sequencing technologies (GSTs), I argue that biomedical technologies can lead to epistemic injustice through two primary pathways: epistemic capture and value partitioning. I close by discussing the larger ethical and political context of critical analyses of GSTs and their broader implications for just and equitable healthcare delivery
Persistent Reductions in OCS Use in Patients With Severe, OCS-Dependent Asthma Treated With Dupilumab : LIBERTY ASTHMA TRAVERSE Study
Acknowledgments and funding sources Data first presented at the 118th International Conference of the American Thoracic Society (ATS 2022); San Francisco, CA, USA; May 13–18, 2022. Research sponsored by Sanofi and Regeneron Pharmaceuticals, Inc. ClinicalTrials.gov Identifiers: NCT02528214 (VENTURE)/NCT02134028 (TRAVERSE). Medical writing/editorial assistance was provided by Anthony Aggidis, PhD, of Excerpta Medica, and was funded by Sanofi and Regeneron Pharmaceuticals, Inc., according to the Good Publication Practice guideline. Alternate presenters: Anne Atenhan and Mayank Thakur.Peer reviewe
Atmospheric methane and nitrous oxide: challenges alongthe path to Net Zero.
The causes of methane's renewed rise since 2007, accelerated growth from 2014 and record rise in 2020, concurrent with an isotopic shift to values more depleted in 13C, remain poorly understood. This rise is the dominant departure from greenhouse gas scenarios that limit global heating to less than 2°C. Thus a comprehensive understanding of methane sources and sinks, their trends and inter-annual variations are becoming more urgent. Efforts to quantify both sources and sinks and understand latitudinal and seasonal variations will improve our understanding of the methane cycle and its anthropogenic component. Nationally declared emissions inventories under the UN Framework Convention on Climate Change (UNFCCC) and promised contributions to emissions reductions under the UNFCCC Paris Agreement need to be verified independently by top-down observation. Furthermore, indirect effects on natural emissions, such as changes in aquatic ecosystems, also need to be quantified. Nitrous oxide is even more poorly understood. Despite this, options for mitigating methane and nitrous oxide emissions are improving rapidly, both in cutting emissions from gas, oil and coal extraction and use, and also from agricultural and waste sources. Reductions in methane and nitrous oxide emission are arguably among the most attractive immediate options for climate action. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 1)'
- …