166 research outputs found

    Spectrophotometric analysis of the Ryugu rock seen by MASCOT: Searching for a carbonaceous chondrite analog

    Get PDF
    We analyze images of a rock on Ryugu acquired in situ by MASCam, camera of the MASCOT lander, with the aim of identifying possible carbonaceous chondrite (CC) analogs. The rock's reflectance (rF=0.034±0.003r_{\rm F} = 0.034 \pm 0.003 at phase angle 4.5±0.14.5^\circ \pm 0.1^\circ) is consistent with Ryugu's average reflectance, suggesting that the rock is typical for this asteroid. A spectrophotometric analysis of the rock's inclusions provides clues to CC group membership. Inclusions are generally brighter than the matrix. The dominant variation in their color is a change of the visible spectral slope, with many inclusions being either red or blue. Spectral variation in the red channel hints at the presence of the 0.7~μ\mum absorption band linked to hydrated phyllosilicates. The inclusions are unusually large for a CC; we find that their size distribution may best match that of the Renazzo (CR2) and Leoville (CV3) meteorites. The Ryugu rock does not easily fit into any of the CC groups, consistent with the idea that typical Ryugu-type meteorites are too fragile to survive atmospheric entry

    The BepiColombo Laser Altimeter (BELA) during Near-Earth Commissioning Phase (NECP)

    Get PDF
    The ESA/JAXA joint mission BepiColombo to Mercury was launched successfully on October 20, 2018 (UTC) from Kourou, French Guiana. Currently BepiColombo is on its nominal 7-years cruise to the innermost planet. BepiColombo consists of two spacecraft, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO), both targeted for different orbits around Mercury after arrival in December 2025. The BepiColombo Laser Altimeter (BELA) is one of ten payloads on the MPO. After launch the spacecraft and the instruments entered the Near-Earth Commissioning Phase (NECP), including a first switch-on of BELA on November24, 2018. Here we report on the status of the instrument based on the analysis of NECP data and on data from a second switch-on, planned for June 2019

    Long-term Plan to Monitor Venus using Earth-orbiting CubeSats: Chasing the Long-term Variability of Our Nearest Neighbor Planet Venus (CLOVE)

    Get PDF
    Past Venus studies reported unexpected temporal variations on a global scale in terms of ultraviolet (UV) reflectivity, SO _{2} and H _{2}O gas abundances, cloud top altitudes, and zonal wind speed. These variations are plausibly connected to each other and to global atmospheric circulation, atmospheric chemistry, volcanism, and solar activity cycles. The nature of these reported variations is unknown: are they periodic? What is the driving mechanism? What are the implications for the current climate? To answer these questions, we plan a long-term Venus monitoring campaign. Our plan has been selected by the Institute for Basic Science (IBS), South Korea, and funded for the first 5 years by a research grant (2022-2027). Our international and ambitious project includes long-term monitoring with ground-based telescopes and space-based CubeSats. Ground-based telescopes will perform observations from 320 nm to the near-infrared (NIR). CubeSats in Earth orbit will provide a high temporal resolution and a unique UV wavelength coverage, as is only possible to achieve from space. We will simultaneously retrieve reflectivity, SO _{2} abundance, cloud top altitude, and haze abundance above the clouds to elucidate the mechanism behind their correlations. Our effort will benefit from coordinated observations with the active space missions Akatsuki and BepiColombo. We will perform a feasibility study to assess the use of CubeSats for Venus observations, with the goal of having the first CubeSat ready within 5 years, for a mission that can be extended with other CubeSats for a total of 15 years, covering the time of future Venus missions by NASA and ESA. Long-term monitoring will characterize the temporal variability of the variations, allowing us to reveal their origin and nature

    Conformational changes of a Swi2/Snf2 ATPase during its mechano-chemical cycle

    Get PDF
    Remodelling protein nucleic acid interfaces is an important biological task, which is often carried out by nucleic acid stimulated ATPases of the Swi2/Snf2 superfamily. Here we study the mechano-chemical cycle of such an ATPase, namely the catalytic domain of the Sulfolobus solfataricus Rad54 homologue (SsoRad54cd), by means of fluorescence resonance energy transfer (FRET). The results of the FRET studies show that the enzyme can be found in (at least) two different possible conformations in solution. An open conformation, consistent with a recently reported crystal structure, is converted into a closed conformation after DNA binding. Upon subsequent binding of ATP no further change in conformation can be detected by the FRET measurements. Instead, a FRET detectable conformational change occurs after ATP hydrolysis and prior to ADP release, suggesting a powerstroke that is linked to phosphate release. Based on these data we will present a new model for the mechano-chemical cycle of this enzyme. This scheme in turn provides a working model for understanding the function of other members of the Swi2/Snf2 family

    Infrared Mapper (IRMA) for Support of Comet Sample Return Missions

    Get PDF
    Comets are remnants from the formation of the Solar System, and contain the most pristine material available today for deciphering the physical and chemical conditions of this process. As such, they are very interesting candidates for sample return missions, as indicated for example by the recent mission proposals CAESAR, CONDOR, and CORSAIR to the NASA New Frontiers 4 call. For maximizing the science return from such a mission the optimum selection of sampling site(s) is crucial. To support this selection we propose a remote sensing instrument working in the thermal infrared (TIR) wavelength range

    Space-qualified laser system for the BepiColombo Laser Altimeter

    Get PDF
    The space-qualified design of a miniaturized laser for pulsed operation at a wavelength of 1064 nm and at repetition rates up to 10 Hz is presented. This laser consists of a pair of diode-laser pumped, actively q-switched Nd:YAG rod oscillators hermetically sealed and encapsulated in an environment of dry synthetic air. The system delivers at least 300 million laser pulses with 50 mJ energy and 5 ns pulse width (FWHM). It will be launched in 2017 aboard European Space Agency’s Mercury Planetary Orbiter as part of the BepiColombo Laser Altimeter, which, after a 6-years cruise, will start recording topographic data from orbital altitudes between 400 and 1500 km above Mercury’s surface

    Ryugu as seen close up by MASCOT

    Get PDF
    In October 2018, MASCOT landed on the surface of Ryugu to start a campaign of in-situ measurements. Its brief mission was successful, with the onboard camera revealing the surface of this C-type asteroid in unpre- cedented detail. The presence of abundant mm-sized, multi-colored inclusions in one rock suggests a link between Ryugu and carbonaceous chondrites

    The Ganymede Laser Altimeter (GALA) for the Jupiter Icy Moons Explorer (JUICE): Mission, science, and instrumentation of its receiver modules

    Get PDF
    The Jupiter Icy Moons Explorer (JUICE) is a science mission led by the European Space Agency, being developed for launch in 2023. The Ganymede Laser Altimeter (GALA) is an instrument onboard JUICE, whose main scientific goals are to understand ice tectonics based on topographic data, the subsurface structure by measuring tidal response, and small-scale roughness and albedo of the surface. In addition, from the perspective of astrobiology, it is imperative to study the subsurface ocean scientifically. The development of GALA has proceeded through an international collaboration between Germany (the lead), Japan, Switzerland, and Spain. Within this framework, the Japanese team (GALA-J) is responsible for developing three receiver modules: the Backend Optics (BEO), the Focal Plane Assembly (FPA), and the Analog Electronics Module (AEM). Like the German team, GALA-J also developed software to simulate the performance of the entire GALA system (performance model). In July 2020, the Proto-Flight Models of BEO, FPA, and AEM were delivered from Japan to Germany. This paper presents an overview of JUICE/GALA and its scientific objectives and describes the instrumentation, mainly focusing on Japan’s contribution

    The CHEOPS mission

    Full text link
    The CHaracterising ExOPlanet Satellite (CHEOPS) was selected in 2012, as the first small mission in the ESA Science Programme and successfully launched in December 2019. CHEOPS is a partnership between ESA and Switzerland with important contributions by ten additional ESA Member States. CHEOPS is the first mission dedicated to search for transits of exoplanets using ultrahigh precision photometry on bright stars already known to host planets. As a follow-up mission, CHEOPS is mainly dedicated to improving, whenever possible, existing radii measurements or provide first accurate measurements for a subset of those planets for which the mass has already been estimated from ground-based spectroscopic surveys and to following phase curves. CHEOPS will provide prime targets for future spectroscopic atmospheric characterisation. Requirements on the photometric precision and stability have been derived for stars with magnitudes ranging from 6 to 12 in the V band. In particular, CHEOPS shall be able to detect Earth-size planets transiting G5 dwarf stars in the magnitude range between 6 and 9 by achieving a photometric precision of 20 ppm in 6 hours of integration. For K stars in the magnitude range between 9 and 12, CHEOPS shall be able to detect transiting Neptune-size planets achieving a photometric precision of 85 ppm in 3 hours of integration. This is achieved by using a single, frame-transfer, back-illuminated CCD detector at the focal plane assembly of a 33.5 cm diameter telescope. The 280 kg spacecraft has a pointing accuracy of about 1 arcsec rms and orbits on a sun-synchronous dusk-dawn orbit at 700 km altitude. The nominal mission lifetime is 3.5 years. During this period, 20% of the observing time is available to the community through a yearly call and a discretionary time programme managed by ESA.Comment: Submitted to Experimental Astronom
    corecore