825 research outputs found

    Congruences of lines in P5\mathbb{P}^5, quadratic normality, and completely exceptional Monge-Amp\`ere equations

    Full text link
    The existence is proved of two new families of locally Cohen-Macaulay sextic threefolds in P5\mathbb{P}^5, which are not quadratically normal. These threefolds arise naturally in the realm of first order congruences of lines as focal loci and in the study of the completely exceptional Monge-Amp\`ere equations. One of these families comes from a smooth congruence of multidegree (1,3,3)(1,3,3) which is a smooth Fano fourfold of index two and genus 9.Comment: 16 page

    Nanostructuring of High-TC Superconductors into Micro-Sized Zones

    Get PDF

    Galaxies in group and field environments: a comparison of optical-NIR luminosities and colors

    Full text link
    We compare properties of galaxies in loose groups with those in field environment by analyzing the Nearby Optical Galaxy (NOG) catalog of galaxy systems. We consider as group galaxies, objects belonging to systems with at least five members identified by means of the "friends of friends method", and, as field galaxies, all galaxies with no companions. We analyze both a magnitude--limited sample of 959 and 2035 galaxies (groups vs. field galaxies, respectively, B<14 mag, and 2000<cz<6000 km/s) and a volume-limited sample (M_B <-19.01 mag, 2000<cz<4000 km/s 369 group and 548 field galaxies). For all these galaxies, blue corrected magnitudes and morphological types are available. The cross-correlation of NOG with the 2MASS second release allow us to assign K magnitudes and obtain B-K colors for about half of the galaxies in our samples. We analyze luminosity and color segregation-effects in relation with the morphological segregation. For both B and K bands, we find that group galaxies are, on average, more luminous than field galaxies and this effect is not entirely a consequence of the morphological segregation. After taking into account the morphological segregation, the luminosity difference between group and field galaxies is about 10%. When considering only very early-type galaxies (T<-2) the difference is larger than 30%. We also find that group galaxies are redder than field galaxies, Delta(B-K) about 0.4 mag. However, after taking into account the morphological segregation, we find a smaller B-K difference, poorly significant (only at the c.l. of about 80%).Comment: 11 pages, 10 eps figures, A&A in pres

    Evidence of a new low field cross-over in the vortex critical velocity of type-II superconducting thin films

    Full text link
    We measure current-voltage characteristics as function of magnetic field and temperature in Nb strips of different thickness and width. The instability voltage of the flux flow state related to the vortex critical velocity v* is studied and compared with the Larkin-Ovchinnikov theory. Beside the usual power-law dependence v* ~ B^-1/2, in the low field range a new cross-over field, Bcr1, is observed below which v* decreases by further lowering the external magnetic field B. We ascribe this unexpected cross-over to vortex channeling due to a fan-like penetration of the applied magnetic field as confirmed by magneto-optic imaging. The observation of Bcr1 becomes a direct evidence of a general feature in type-II superconducting films at low fields, that is a channel-like vortex motion induced by the inhomogeneous magnetic state caused by the relatively strong pinning

    Structures in Galaxy Clusters

    Full text link
    The analysis of the presence of substructures in 16 well-sampled clusters of galaxies suggests a stimulating hypothesis: Clusters could be classified as unimodal or bimodal, on the basis of to the sub-clump distribution in the {\em 3-D} space of positions and velocities. The dynamic study of these clusters shows that their fundamental characteristics, in particular the virial masses, are not severely biased by the presence of subclustering if the system considered is bound.Comment: (16 pages in LATEX, 4 tables in LATEX are at the end of the file, the figures not included are available upon request), REF SISSA 158/93/

    Nanosized patterns as reference structures for macroscopic transport properties and vortex phases in YBCO films

    Full text link
    This paper studies the striking correlation between nanosized structural patterns in YBCO films and macroscopic transport current. A nanosized network of parallel Josephson junctions laced by insulating dislocations is almost mimicking the grain boundary structural network. It contributes to the macroscopic properties and accounts for the strong intergranular pinning across the film in the intermediate temperature range. The correlation between the two networks enables to find out an outstanding scaling law in the (Jc,B) plane and to determine meaningful parameters concerning the matching between the vortex lattice and the intergranular defect lattice. Two asymptotic behaviors of the pinning force below the flux flow regime are checked: the corresponding vortex phases are clearly individuated.Comment: 4 pages, 4 figure

    Is a matrix exponential specification suitable for the modeling of spatial correlation structures?

    Get PDF
    This paper investigates the adequacy of the matrix exponential spatial specifications (MESS) as an alternative to the widely used spatial autoregressive models (SAR). To provide as complete a picture as possible, we extend the analysis to all the main spatial models governed by matrix exponentials comparing them with their spatial autoregressive counterparts. We propose a new implementation of Bayesian parameter estimation for the MESS model with vague prior distributions, which is shown to be precise and computationally efficient. Our implementations also account for spatially lagged regressors. We further allow for location-specific heterogeneity, which we model by including spatial splines. We conclude by comparing the performances of the different model specifications in applications to a real data set and by running simulations. Both the applications and the simulations suggest that the spatial splines are a flexible and efficient way to account for spatial heterogeneities governed by unknown mechanisms

    A new apparatus for deep patterning of beam sensitive targets by means of high-energy ion beam

    Full text link
    The paper reports on a high precision equipment designed to modify over 3-dimensions (3D) by means of high-energy gold ions the local properties of thin and thick films. A target-moving system aimed at creating patterns across the volume is driven by an x-y writing protocol that allows one to modify beam sensitive samples over micrometer-size regions of whatever shape. The apparatus has a mechanical resolution of 15 nm. The issue of the local fluence measurement has been particularly addressed. The setup has been checked by means of different geometries patterned on beam sensitive sheets as well as on superconducting materials. In the last case the 3D modification consists of amorphous nanostructures. The nanostructures create zones with different dissipative properties with respect to the virgin regions. The main analysis method consists of magneto-optical imaging that provides local information on the electrodynamics of the modified zones. Features typical of non-linear current flow hint at which pattern geometry is more functional to applications in the framework of nanostructures across superconducting films.Comment: 7 page

    Perazzo 3-folds and the weak Lefschetz property

    Get PDF
    We deal with Perazzo 3-folds in P4, i.e. hypersurfaces X = V(f) subset of P4 of degree d defined by a homogeneous polynomial f(x0, x1, x2, u, v) = p0(u, v)x0 +p1(u, v)x1 + p2(u, v)x2 + g(u, v), where p0, p1, p2 are algebraically dependent but linearly independent forms of degree d - 1 in u, v, and g is a form in u, v of degree d. Perazzo 3-folds have vanishing hessian and, hence, the associated graded Artinian Gorenstein algebra Af fails the strong Lefschetz Property. In this paper, we determine the maximum and minimum Hilbert function of Af and we prove that if Af has maximal Hilbert function it fails the weak Lefschetz Property while it satisfies the weak Lefschetz Property when it has minimum Hilbert function. In addition, we classify all Perazzo 3-folds in P4 such that Af has minimum Hilbert function.(c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses /by -nc -nd /4 .0/)
    • …
    corecore