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We deal with Perazzo 3-folds in P4, i.e. hypersurfaces X =
V (f) ⊂ P4 of degree d defined by a homogeneous polynomial 
f(x0, x1, x2, u, v) = p0(u, v)x0 + p1(u, v)x1 + p2(u, v)x2 +
g(u, v), where p0, p1, p2 are algebraically dependent but 
linearly independent forms of degree d − 1 in u, v, and g
is a form in u, v of degree d. Perazzo 3-folds have vanishing 
hessian and, hence, the associated graded Artinian Gorenstein 
algebra Af fails the strong Lefschetz Property. In this paper, 
we determine the maximum and minimum Hilbert function 
of Af and we prove that if Af has maximal Hilbert function 
it fails the weak Lefschetz Property while it satisfies the weak 
Lefschetz Property when it has minimum Hilbert function. In 
addition, we classify all Perazzo 3-folds in P4 such that Af

has minimum Hilbert function.
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1. Introduction

Having vanishing hessian is an elementary property of hypersurfaces that are cones. 
Conversely in every projective space PN with N ≥ 4 there exist classes of examples 
of hypersurfaces with vanishing hessian that are not cones. This was first proved by P. 
Gordan and M. Noether ([12]), who disproved a claim by O. Hesse: any hypersurface 
X ⊂ PN with vanishing hessian is a cone ([14], [15]). Let X be the hypersurface in PN

defined by a polynomial f(x0, . . . , xN ). Gordan and Noether realized that X being a cone 
is equivalent to the condition that the partial derivatives of f are K-linearly dependent, 
while X has vanishing hessian if and only if they are K-algebraically dependent. They 
also gave a complete description of the hypersurfaces in P 4, not cones, with vanishing 
hessian. Subsequent contributions were given by several authors. We refer to [26] for an 
exhaustive bibliography.

J. Watanabe in [29], and in [21] in collaboration with T. Maeno, established the follow-
ing strict connection between the Lefschetz properties of Artinian Gorenstein algebras 
and hypersurfaces with vanishing hessian. We recall that an Artinian K-algebra A has 
the strong Lefschetz Property (respectively, the weak Lefschetz Property) if for a gen-
eral linear form L ∈ [A]1, the morphism ×Lk : [A]t −→ [A]t+k has maximal rank for all 
integers t ≥ 0 and k ≥ 1 (respectively, the morphism ×L : [A]t −→ [A]t+1 has maximal 
rank for all integers t ≥ 0).

Given a homogeneous polynomial f in N + 1 variables, we denote by Af the quo-
tient of the differential operators’ ring by the annihilator of f ; it is a standard Artinian 
Gorenstein algebra whose socle degree d coincides with the degree of f . In addition to 
the classical hessian, one defines the hessians of f of order t, for 0 ≤ t ≤ d. Then, Af

fails the strong Lefschetz Property if and only if the hessian of f of order t vanishes for 
some t with 1 ≤ t ≤ �d

2�. In particular, the hypersurfaces with vanishing hessian all fail 
the strong Lefschetz Property. A natural question is then if they have or fail the weak 
Lefschetz Property. This question was considered by R. Gondim in [11], and he found 
examples of both types.

In this article, we consider the case of P 4, where the classification of hypersurfaces 
with vanishing hessian not cones is complete. Following the terminology introduced by 
Gondim in [11], a hypersurface in P 4 of degree d ≥ 3 is a Perazzo hypersurface if, using 
homogeneous coordinates x0, x1, x2, u, v, it has equation of the form f = p0x0 + p1x1 +
p2x2 + g, where p0, p1, p2 are algebraically dependent but linearly independent forms 
of degree d − 1 in u, v, and g is a form in u, v of degree d. Perazzo hypersurfaces have 
vanishing hessian. On the other hand, according to [30], [31] and [32], any hypersurface of 
degree d, with 3 ≤ d ≤ 5 of P 4 not cone with vanishing hessian is a Perazzo hypersurface. 
In general, as proved by Gordan and Noether in [12], all forms with vanishing hessian, 
not cones, are elements of K[u, v][Δ] where Δ is a Perazzo polynomial of the form 
p0x0 + p1x1 + p2x2 (see [32, Theorem 7.3]). If d = 3 for such an f clearly Af fails the 
weak Lefschetz Property. For d = 4 Gondim proved that the Artinian Gorenstein algebra 
of every Perazzo 3-fold has the weak Lefschetz Property.
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Here we study the weak Lefschetz Property for Artinian Gorenstein algebras asso-
ciated to Perazzo 3-folds of any degree d ≥ 3. First we consider the possible Hilbert 
functions HFAf

of Af . In Propositions 3.7 and 3.8 we prove that they have a maximum 
and a minimum, coinciding only if d = 3, 4. We then study the weak Lefschetz Property 
for the algebras Af whose Hilbert function attains the upper or the lower bound. Our 
main results, contained in Theorems 4.1 and 4.3, say that Af has the weak Lefschetz 
Property if HFAf

is minimum but it fails the weak Lefschetz Property if HFf is maxi-
mum. For d = 5 this exhausts all possibilities; for d ≥ 6 we give examples proving that 
for intermediate values of the Hilbert function both possibilities occur (see Example 4.5). 
For further results on this topic see [1].

We then focus our attention on Artinian Gorenstein algebras Af having minimum 
Hilbert function; using the theory of Waring rank for forms in 2 variables, we are able 
to obtain in Theorem 5.4 a complete list of these Perazzo 3-folds. The classification is 
in terms of the position of the linear space π generated by p0, p1, p2 in P (K[u, v]d−1), 
with respect to the secant varieties of the rational normal curve Cd−1. It results that, to 
ensure that Af has minimal Hilbert function, π has to meet Cd−1, and there are three 
possibilities: either π is an osculating plane to Cd−1, or it is tangent to π and meets 
the curve again in a second point, or the intersection π ∩Cd−1 consists of three distinct 
points. We conclude with a geometrical study of the polar and Gauss maps associated 
to these 3-folds.

Next we outline the structure of this article. In Section 2, we recall the notions of 
strong and weak Lefschetz Property of an Artinian Gorenstein algebra, and of higher 
order hessians of a form. Then we state the theorem of J. Watanabe establishing a link 
between the failure of the strong Lefschetz Property for Artinian Gorenstein algebras 
and the vanishing of some hessian (Theorem 2.5). We give some examples illustrating 
these notions. In Section 3, we define Perazzo hypersurfaces and we study the h-vectors 
h = (h0, h1, . . . , hd−1, hd) of the associated Artinian Gorenstein algebras in the case 
of P 4. We relate them to the ranks of some block matrices composed of catalecticant 
matrices. In Propositions 3.7 and 3.8 we find the minimum and the maximum h-vector 
of these algebras for any degree d ≥ 4. In Section 4, we study if the weak Lefschetz 
Property holds for Artinian Gorenstein algebras associated to Perazzo hypersurfaces. 
We prove that, for d ≥ 5, the algebras Af whose h-vector is maximum always fail the 
weak Lefschetz Property (Theorem 4.1), while the algebras whose h-vector is minimum 
always have it (Theorem 4.3). In Section 5, we give a full classification of the Perazzo 
3-folds of degree d ≥ 5 whose associated Artinian Gorenstein algebra has minimum h-
vector. This is done using the stratification of Pd−1 via the Waring rank of forms of 
degree d − 1 in two variables. Finally we study the geometry of these 3-folds, in terms 
of the image and fibres of their polar and Gauss map.

Acknowledgment. Most of this work was done while the third author was a guest of the 
University of Trieste, and she would like to thank the people of the Dipartimento di 
Matematica e Geoscienze for their warm hospitality.
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2. Lefschetz properties and Artinian Gorenstein algebras

In this section we fix notation, we recall the definition of weak/strong Lefschetz Prop-
erty and we briefly discuss general facts on Artinian Gorenstein algebras needed in next 
sections.

Throughout this work K will be an algebraically closed field of characteristic zero. 
Given a standard graded Artinian K-algebra A = R/I where R = K[x0, x1, . . . , xn] and 
I is a homogeneous ideal of R, we denote by HFA : Z −→ Z with HFA(j) = dimK [A]j
its Hilbert function. Since A is Artinian, its Hilbert function is captured in its h-vector
h = (h0, h1, . . . , he) where hi = HFA(i) > 0 and e is the last index with this property. 
The integer e is called the socle degree of A.

2.1. Lefschetz properties

Definition 2.1. Let A = R/I be a graded Artinian K-algebra. We say that A has the 
weak Lefschetz Property (WLP, for short) if there is a linear form L ∈ [A]1 such that, 
for all integers i ≥ 0, the multiplication map

×L : [A]i −→ [A]i+1

has maximal rank, i.e. it is injective or surjective. (We will often abuse notation and say 
that the ideal I has the WLP.) In this case, the linear form L is called a Lefschetz element 
of A. If for the general form L ∈ [A]1 and for an integer j the map ×L : [A]j−1 −→ [A]j
does not have maximal rank, we will say that the ideal I fails the WLP in degree j.

A has the strong Lefschetz Property (SLP, for short) if there is a linear form L ∈ [A]1
such that, for all integers i ≥ 0 and k ≥ 1, the multiplication map

×Lk : [A]i −→ [A]i+k

has maximal rank. Such an element L is called a strong Lefschetz element for A.
A has the strong Lefschetz Property in the narrow sense if there exists an element 

L ∈ [A]1 such that the multiplication map

×Le−2i : [A]i −→ [A]c−i

is bijective for i = 0, · · · , [e/2] being e the socle degree of A.

At first glance the problem of determining whether an Artinian standard graded 
K-algebra A has the WLP seems a simple problem of linear algebra, but instead it 
has proven to be extremely elusive. Part of the great interest in the WLP stems from 
the ubiquity of its presence and there are a long series of papers determining classes 
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of Artinian algebras holding/failing the WLP but much more work remains to be done 
(see, for instance, [7] and [22]). The first result in this direction is due to Stanley [27] and 
Watanabe [28] and it asserts that the WLP holds for an Artinian complete intersection 
ideal generated by powers of linear forms.

Example 2.2. (1) The ideal I = (x3
1, x

3
1, x

3
2, x1x2x3) ⊂ K[x1, x2, x3] fails to have the 

WLP, because for any linear form L = ax1 + bx2 + cx3 the multiplication map

×L : [k[x1, x2, x3]/I]2 ∼= K6 −→ [k[x1, x2, x3]/I]3 ∼= K6

is neither injective nor surjective. More details on this example can be found in [4, 
Example 3.1].

(2) The ideal I = (x3
1, x

3
2, x

3
3, x

2
1x2) ⊂ K[x1, x2, x3] has the WLP. Since the h-vector 

of R/I is (1,3,6,6,4,1), we only need to check that the map ×L : [R/I]i −→ [R/I]i+1
induced by L = x1 + x2 + x3 is surjective for i = 2, 3, 4. This is equivalent to check that 
[R/(I, L)]i = 0 for i = 3, 4, 5. Obviously, it is enough to check the case i = 3. We have

[R/(I, L)]3 ∼= [K[x1, x2, x3]/(x3
1, x

3
2, x

3
3, x

2
1x2, x1 + x2 + x3)]3

∼= [K[x1, x2]/(x3
1, x

3
2, x

3
1 + 3x2

1x2 + 3x1x
2
2 + x3

2, x
2
1x2)]3

∼= [k[x1, x2]/(x3
1, x

3
2, x

2
1x2, x1x

2
2)]3 = 0

which proves what we want.

It is worthwhile to point out that the weak Lefschetz Property implies the unimodality 
of the Hilbert function. If a graded Artinian K-algebra A has the SLP in the narrow 
sense, then the Hilbert function of A is unimodal and symmetric. Finally, if a graded 
Artinian K-algebra A has a symmetric Hilbert function, the notion of the SLP on A
coincides with the one in the narrow sense. In this work, we will deal with Artinian 
Gorenstein algebras A. It is well known that A has symmetric Hilbert function. So, in 
the subsequent sections, the strong Lefschetz Property will be used in the narrow sense.

2.2. Artinian Gorenstein ideals

In this subsection, we will characterize the Lefschetz elements for graded Artinian 
Gorenstein algebras A. Given R = K[x0, · · · , xn], we denote by S = K[y0, · · · , yn] the 
ring of differential operators on R, i.e., yi = ∂

∂xi
. For any homogeneous polynomial 

f ∈ Rd, we define

AnnS(f) := {p ∈ S | p(f) = 0} ⊂ S.

It is well known that A = S/ AnnS(f) is a standard graded Artinian Gorenstein K-
algebra. Conversely, the theory of inverse systems developed by Macaulay gives the 
following characterization of standard graded Artinian Gorenstein K-algebras.
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Proposition 2.3. Set R = K[x0, · · · , xn] and let S = K[y0, · · · , yn] be the ring of differ-
ential operators on R. Let A = S/I be a standard Artinian graded K-algebra. Then, A is 
Gorenstein if and only if there is f ∈ R such that A ∼= S/AnnS(f). Moreover, isomorphic 
Gorenstein algebras are defined by forms equal up to a linear change of variables in R.

Under the hypothesis of the above proposition we have that the degree of f coincides 
with the socle degree of A.

Definition 2.4. Let f ∈ K[x0, · · · , xn] be a homogeneous polynomial and let A =
S/ AnnS(f) be the associated Artinian Gorenstein algebra. Fix B = {wj | 1 ≤ j ≤
ht := dimAt} ⊂ At be an ordered K-basis. The t-th (relative) Hessian matrix of f with 
respect to B is defined as the ht × ht matrix:

Hesstf = (wiwj(f))i,j .

The t-th Hessian of f with respect to B is

hesstf = det(Hesstf ).

The 0-th Hessian is just the polynomial f and, in the case dimA1 = n + 1, the 1st 
Hessian, with respect to the standard basis, is the classical Hessian. It is worthwhile to 
point out that the definition of Hessians and Hessian matrices of order t depends on the 
choice of a basis of At but the vanishing of the t-th Hessian is independent of this choice.

We end this preliminary section with a result due to Watanabe which establishes a 
useful link between the failure of Lefschetz properties and the vanishing of higher order 
Hessians.

Theorem 2.5. Let f ∈ K[x0, · · · , xn] be a homogeneous polynomial of degree d and let A =
S/ AnnS(f) be the associated Artinian Gorenstein algebra. L = a0y0 + · · ·+anyn ∈ A1 is 
a strong Lefschetz element of A if and only if hesstf (a0, · · · , an) �= 0 for t = 1, · · · , [d/2]. 
More precisely, up to a multiplicative constant, hesstf (a0, · · · , an) is the determinant of 
the dual of the multiplication map ×Ld−2t : [A]t −→ [A]d−t.

Proof. See [29, Theorem 4] and [21, Theorem 3.1]. �
Example 2.6. To illustrate Watanabe’s theorem, we consider Ikeda’s example of an Ar-
tinian Gorenstein algebra of codimension 4 failing WLP (see [18, Example 4.4]). We 
take

f = x0x
3
2x3 + x1x2x

3
3 + x3

0x
2
1 ∈ K[x0, x1, x2, x3].

Let S = K[y0, y1, y2, y3] be the ring of differential operators on R. We compute AnnS(f)
and we get:
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AnnS(f) = 〈y0y
2
3 , y

2
1y3, y0y1y3, y

2
0y3, y1y

2
2 , y0y

2
2 − y1y

2
3 , y

2
1y2, y0y1y2, y

2
0y2, y

3
1 , y

4
3 , y

2
2y

2
3 ,

y4
2 , y

2
0y

2
1 − 2y3

2y3, y
3
0y1 − 2y2y

3
3 , y

4
0〉.

The h-vector of A = S/ AnnS(f) is: (1, 4, 10, 10, 4, 1). We will apply the above 
criterion to check that A fails the WLP in degree 3. To this end, we consider a K-basis 
of [A]2:

{y2
0 , y

2
1 , y

2
2 , y

2
3 , y0y1, y0y2, y0y3, y1y2, y1y3, y2y3}.

We get

Hess2f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 12x0 0 0 6x1 0 0 0 0 0
12x0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 6x3 6x2 0 0 6x0
0 0 0 0 0 0 0 6x3 6x2 6x1

6x1 0 0 0 6x0 0 0 0 0 0
0 0 6x3 0 0 0 0 0 0 6x2
0 0 6x2 0 0 0 0 0 0 0
0 0 0 6x3 0 0 0 0 0 0
0 0 0 6x2 0 0 0 0 0 6x3
0 0 6x0 6x1 0 6x2 0 0 6x3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For any (a0, a1, a2, a3) ∈ K4, we have hess2f (a0, a1, a2, a3) = 0. So, for any L ∈ [A]1, 
the multiplication map ×L : [A]2 −→ [A]3 has zero determinant. Therefore, it is not 
bijective and we conclude that A fails the WLP.

3. Perazzo 3-folds and the h-vector of the associated Gorenstein algebra

The goal of this section is to get upper and lower bounds for the h-vector of a standard 
graded Artinian Gorenstein algebra associated to a Perazzo 3-fold X in P 4. So, let us 
start recalling its definition.

Definition 3.1. Fix N ≥ 4. A Perazzo hypersurface X ⊂ PN of degree d is a hypersurface 
defined by a form f ∈ K[x0, · · · , xn, u1 · · · , um] of the following type:

f = x0p0 + x1p1 + · · · + xnpn + g

where n + m = N , n, m ≥ 2, pi ∈ K[u1, · · · , um]d−1 are algebraically dependent but 
linearly independent and g ∈ K[u1, · · · , um]d.

It is worthwhile to point out that usually Perazzo hypersurfaces are assumed to be 
reduced and irreducible (see, for instance, [11, Definition 3.12]). We will insert these 
hypotheses if it is required.
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Example 3.2. As a first example of Perazzo hypersurface we have the cubic 3-fold in P 4

of equation:

f(x0, x1, x2, u, v) = x0u
2 + x1uv + x2v

2.

It is a cubic hypersurface with vanishing hessian but not a cone. So, it provides the first 
counterexample to Hesse’s claim: any hypersuface X ⊂ PN with vanishing hessian is a 
cone ([14] and [15]).

Hesse’s claim, which is true for quadrics, was studied by Gordan and Noether in [12] for 
hypersurfaces of degree d ≥ 3. They proved it is true for N ≤ 3 but it is false for any N ≥
4. More precisely they gave a complete classification of the hypersurfaces with vanishing 
hessian for N = 4 and a series of examples of hypersurfaces with vanishing hessian not 
cones for any N ≥ 5. Subsequently Perazzo in [25] described all cubic hypersurfaces with 
vanishing hessian for N = 4, 5, 6. The results of Gordan-Noether and of Perazzo have 
been recently considered and rewritten in modern language by many authors [3], [6], [9], 
[19], [10], [30] and [32].

Remark 3.3. We recall that the hypersurface defined by a polynomial f has vanishing 
hessian if and only if the partial derivatives of f are algebraically dependent, and it is a 
cone if and only if they are linearly dependent. It follows that the Perazzo hypersurfaces, 
introduced in Definition 3.1, have all vanishing first hessian and in general are not cones.

In P 4 the Gordan-Noether classification states that, for degree d ≤ 5, the hypersur-
faces not cones with vanishing hessian are all Perazzo hypersurfaces, while for degree 
d > 5, a form of degree d with vanishing hessian, not cone, is an element of K[u, v][Δ]
where Δ is a Perazzo polynomial of the form p0x0 + p1x1 + p2x2 (see [12] and [32, 
Theorem 7.3]).

In [21] Maeno and Watanabe found a connection between the vanishing of higher 
order hessians and Lefschetz properties, in particular with the SLP; then Gondim in [11]
studied the WLP for some hypersurfaces with vanishing hessian.

In this note, we will concentrate our attention on Perazzo 3-folds X in P 4 and 
our first goal will be to determine the maximum and minimum h-vector for the 
Gorenstein Artinian algebras associated to them. We will use the following notations: 
R = K[x0, x1, x2, u, v] is the polynomial ring in 5 variables, S = K[y0, y1, y2, U, V ] is the 
ring of differential operators on R, and a Perazzo 3-fold X ⊂ P 4 of degree d is defined 
by a form

f = x0p0(u, v) + x1p1(u, v) + x2p2(u, v) + g(u, v) ∈ Rd. (3.1)

If d = 3, the corresponding algebras have all the same h-vector, and precisely 
(1, 5, 5, 1). In fact, by Remark 3.3, X not being a cone implies h1 = h2 = 5. So, from 
now on, we will assume that d ≥ 4 and we write
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p0(u, v) =
∑d−1

i=0
(
d−1
i

)
aiu

d−1−ivi,

p1(u, v) =
∑d−1

i=0
(
d−1
i

)
biu

d−1−ivi,

p2(u, v) =
∑d−1

i=0
(
d−1
i

)
ciu

d−1−ivi, and
g(u, v) =

∑d
i=0

(
d
i

)
giu

d−ivi.

(3.2)

For any 2 ≤ k ≤ �d+1
2 �, we define the matrices:

Ak :=

⎛
⎜⎜⎝

a0 a1 · · · ak−1
a1 a2 · · · ak
...

...
...

ad−k ad−k+1 · · · ad−1

⎞
⎟⎟⎠ , Bk :=

⎛
⎜⎜⎝

b0 b1 · · · bk−1
b1 b2 · · · bk
...

...
...

bd−k bd−k+1 · · · bd−1

⎞
⎟⎟⎠ ,

Ck :=

⎛
⎜⎜⎝

c0 c1 · · · ck−1
c1 c2 · · · ck
...

...
...

cd−k cd−k+1 · · · cd−1

⎞
⎟⎟⎠ , and Gk :=

⎛
⎜⎜⎝

g0 g1 · · · gk
g1 g2 · · · gk+1
...

...
...

gd−k gd−k+1 · · · gd

⎞
⎟⎟⎠ .

The matrices Ak, Bk, Ck and Gk are the building blocks of the matrices Mk, Nk and N ′
k

that will play an important role in the proof of our main results. They are defined as 
follows:

Mk := (Ak|Bk|Ck ) , Nk :=

⎛
⎝Ak+1

Bk+1

Ck+1

⎞
⎠ and N ′

k :=

⎛
⎜⎜⎜⎝
Ak+1

Bk+1

Ck+1

Gk

⎞
⎟⎟⎟⎠ .

Remark 3.4. (1) The matrices Nk and Mk+1 contain the same 3 blocks of size (d − k) ×
(k + 1).

(2) Since Mk = N t
d−k, we have rankMk = rankNd−k.

(3) As we will see in the proof of Propositions 3.7 and 3.8, the h-vector of S/ AnnS(f)
is minimal if and only if for all k, 2 ≤ k ≤ �d

2�, rankMk = rankN ′
k = 3.

Proposition 3.5. Let f = x0p0(u, v) +x1p1(u, v) +x2p2(u, v) be a form of degree d defining 
a Perazzo 3-fold in P 4. Let h = (h0, h1, . . . , hd) be its h-vector. Then h0 = hd = 1, h1 =
hd−1 = 5 and, for 2 ≤ i ≤ d − 2, hi = 4i + 1 −mi − ni, where mi = 3i − rankMi and 
ni = i + 1 − rankNi.

Proof. Recall that the h-vector of an Artinian Gorenstein algebra is symmetric and, 
hence, we only have to compute hi for 0 ≤ i ≤ �d

2�. We have

hi = dimAi = dimSi − dim AnnS(f)i =
(

4 + i

i

)
− dim AnnS(f)i.

So, we have to compute dim AnnS(f)i for any i, 0 ≤ i ≤ �d
2�. Since p0(u, v), p1(u, v) and 

p2(u, v) are K-linearly independent, we have dim AnnS(f)1 = 0 and, hence, h1 = 5.
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We observe that, for any i ≥ 2, AnnS(f)i contains (y0, y1, y2)i−k(U, V )k, for 0 ≤ k ≤
i − 2. Therefore

dimAi ≤
(

4 + i

i

)
−

i−2∑
k=0

(k + 1)
(
i− k + 2

2

)
= 4i + 1.

We have to compute the numbers

mi = dim(AnnS(f)i ∩ (y0, y1, y2)(U, V )i−1),

ni = dim(AnnS(f)i ∩ (U, V )i),

and we will get

dimAi = 4i + 1 −mi − ni. (3.3)

This can be done because there are no linear dependence relations between the two 
parts, given the bi-homogeneous nature of f with respect to the two groups of variables 
x0, x1, x2 and u, v.

To compute mi we consider a general polynomial of degree i in (y0, y1, y2)(U, V )i−1:

(α0U
i−1+α1U

i−2V +· · ·+αi−1V
i−1)y0+(β0U

i−1+· · ·+βi−1V
i−1)y1+(γ0U

i−1+· · · )y2.

It belongs to AnnS(f)i if and only if

α0p0,ui−1 +α1p0,ui−2v + · · ·+αi−1p0,vi−1 +β0p1,ui−1 + · · ·+γ0p2,ui−1 + · · ·+γi−1p2,vi = 0.

The partial derivatives of p0, p1, p2 appearing in the above expression have degree 
d − i; setting equal to zero the coefficients of the d − i + 1 monomials in u, v, 
we get a homogeneous linear system of d − i + 1 equations in the 3i unknowns 
α0, . . . , αi−1, β0, . . . , βi−1, γ0, . . . , γi−1. The matrix of the coefficients is Mi, therefore 
mi = 3i − rankMi, and we are done.

To compute ni we consider a general polynomial of degree i in U, V :

δ0U
i + δ1U

i−1V + · · · + δiV
i

and we impose that it belongs to AnnS(f)i. We get

(δ0p0,ui + δ1p0,ui−1v + · · · + δip0,vi)x0 + (δ0p1,ui + · · · )x1 + (δ0p2,ui + · · · )x2 = 0.

Looking at the coefficients of x0, x1, x2 and then the coefficients of the monomials in 
u, v of degree d −i −1 and d −i, we get a homogeneous linear system of 3(d −i) +(d −i +1)
equations in i + 1 unknowns, whose matrix of the coefficients is Ni. We conclude that 
ni = i + 1 − rankNi. The proof is complete. �
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Remark 3.6. We observe that the expression for hi can also be written in the form 
hi = rankMi + rankNi. In fact, if we write a unique linear system to compute the 
dimension of the space AnnS(f)i ∩ [(y0, y1, y2)(U, V )i−1 + (U, V )i], the matrix of this 

linear system results to be 

(
0 Ni

Mi 0

)
.

In the general case, when f is as in (3.1) with g �= 0, equality (3.3) is not necessarily 
true, but only the inequality dimAi ≥ 4i + 1 −mi − ni holds true. An explicit example 
is provided by the form f = x0u

9 + x1u
8v + x2v

9 + u5v5.
On the other hand, in this more general situation the matrix associated to the linear 

system to be considered to compute hi is 
(

0 Ni

Mi Gi

)
. This implies, for every index i, 

the series of inequalities

rankMi + rankNi ≤ hi ≤ rankMi + rankN ′
i .

Clearly, every time rankNi = rankN ′
i , we obtain a relation as in Proposition 3.5. 

This is obviously the case when g = 0. It is also the case if one of the polynomials p0, 
p1, p2 is general enough. Indeed, we observe that Ni has maximal rank if and only if its 
columns are linearly independent; so if the rank of one of the matrices Ai+1, Bi+1, Ci+1
is computed by the number of columns then Ni has maximal rank. This happens if one 
of the polynomials p0, p1, p2 is general enough in view of [16, Proposition 3.4].

Proposition 3.7. Let d ≥ 4. The maximum h-vector of the Artinian Gorenstein algebras 
S/AnnS(f) associated to the Perazzo 3-folds of degree d in P 4 is:

(1) If d = 4t − 1 then

hi =

⎧⎪⎪⎨
⎪⎪⎩

4i + 1 for 0 ≤ i ≤ t

4t + 1 for t + 1 ≤ i ≤ 2t− 1
symmetry;

(2) If d = 4t then

hi =

⎧⎪⎪⎨
⎪⎪⎩

4i + 1 for 0 ≤ i ≤ t

4t + 2 for t + 1 ≤ i ≤ 2t
symmetry;

(3) If d = 4t + 1 then

hi =

⎧⎪⎪⎨
⎪⎪⎩

4i + 1 for 0 ≤ i ≤ t

4t + 3 for t + 1 ≤ i ≤ 2t
symmetry;
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(4) If d = 4t + 2 then

hi =

⎧⎪⎪⎨
⎪⎪⎩

4i + 1 for 0 ≤ i ≤ t

4t + 4 for t + 1 ≤ i ≤ 2t + 1
symmetry.

Proof. Let f be a form of degree d as in (3.1) with p0, p1, p2, g as in (3.2). Being the 
h-vector symmetric, we only have to compute hi for 0 ≤ i ≤ d

2 .
In view of Proposition 3.5 and Remark 3.6, the maximal Hilbert function is obtained 

when mi, ni are minimal for any i, i.e. when the ranks of the matrices Mi, N ′
i are as 

large as possible.
Clearly rankMi ≤ min{3i, d − i + 1}. Therefore

rankMi ≤
{

3i for i ≤ d+1
4 ;

d− i + 1 for i ≥ d+1
4 .

Regarding N ′
i , we observe that, in our situation, i + 1 ≤ 3(d − i) + (d − i + 1), so 

always rankN ′
i ≤ i + 1.

This gives upper bounds on hi depending on the class of congruence of the degree d
modulo 4, that are precisely those in the statement of this Proposition.

To conclude the proof, we claim that these bounds are achieved. To this end, we 
observe that, in view of the expressions (3.2), the columns of the matrices Ai, Bi, Ci, Gi

contain up to a constant the coefficients of the partial derivatives of order i − 1 of 
p0, p1, p2, g respectively. But, if p0, p1, p2, g are general enough, then, by [16, Proposition 
3.4], for any i their partial derivatives of order i −1 are as linearly independent as possible 
in K[u, v]d−1−i. This means that the ranks of the matrices Ai, Bi, Ci, Gi are as large as 
possible. This proves our claim. �

A class of explicit examples of polynomials such that the bound in Proposition 3.7 is 
attained can be found in [8, Example 3.20].

To determine the minimum h-vector for the Gorenstein Artinian algebra associated 
to a Perazzo 3-fold X in P 4 we need first to recall some results about the growth of the 
Hilbert function of standard graded K-algebras and to fix some additional notation.

Given integers n, d ≥ 1, we define the d-th binomial expansion of n as

n =
(
ηd
d

)
+

(
ηd−1

d− 1

)
+ · · · +

(
ηe
e

)

where ηd > ηd−1 > · · · > ηe ≥ e ≥ 1 are uniquely determined integers (see [5, Lemma 
4.2.6]). We write

n<d> =
(
ηd + 1

)
+
(
ηd−1 + 1

)
+ · · · +

(
ηe + 1

)
, and
d + 1 d e + 1
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n<d> =
(
ηd − 1

d

)
+
(
ηd−1 − 1
d− 1

)
+ · · · +

(
ηe − 1

e

)
.

The numerical functions H : N −→ N that are Hilbert functions of graded standard 
K-algebras were characterized by Macaulay, [5]. Indeed, given a numerical function H :
N −→ N the following conditions are equivalent:

(i) There exists a standard graded K-algebra A with Hilbert function H,
(ii) H(0) = 1 and H(t + 1) ≤ H(t)<t> for all t ≥ 1.

Notice that condition (ii) imposes strong restrictions on the Hilbert function of a 
standard graded K-algebra and, in particular, it bounds its growth. As an application 
of Macaulay’s theorem, we have:

Proposition 3.8. Let d ≥ 4. Let R = K[x0, x1, x2, u, v] and S = K[y0, y1, y2, U, V ] be the 
ring of differential operators on R. The minimum h-vector of the Artinian Gorenstein 
algebras A = S/AnnS(f) associated to the Perazzo 3-folds of degree d in P 4 is:

(1, 5, 6, 6, · · · 6, 6, 5, 1).

Proof. The proof proceeds as follows: we first prove that the cited t-uple is less than 
any possible h-vector associated to a Perazzo 3-fold, with respect to the termwise order; 
then, we give examples of Perazzo forms that have this h-vector. Let

hA = (h0, h1, h2, h3, · · · hd−2, hd−1, hd)

be the h-vector of A. First of all we observe that, arguing as in the proof of Proposi-
tion 3.7, we get that 6 ≤ h2 ≤ 9 which, together with the fact that the h-vector of any 
standard graded Artinian Gorenstein algebra is symmetric, gives us that a lower bound 
for hA looks like

(1, 5, 6, h3, · · · hd−2, 6, 5, 1).

This concludes the first step for d ≤ 5. We will now prove that if d ≥ 6, for any i, 
3 ≤ i ≤ d − 3, hi ≥ 6.

First we assume d ≥ 8. If hj ≤ 5 for some 5 ≤ j ≤ d − 3, using Macaulay’s inequality 
ht+1 ≤ h<t>

t for all t ≥ 1, we get that hi ≤ 5 for all i ≥ j contradicting the fact that 
hd−2 = 6. Therefore, hj ≥ 6 for all 5 ≤ j ≤ d − 2 and, by symmetry, we also have 
h3, h4 ≥ 6.

For d = 6, 7, we must show that h3 ≥ 6. This last equality follows after a straight-
forward computation which shows that (y0, y1, y2)3 ⊕ (y0, y1, y2)2(U, V ) ⊂ AnnS(f)3, 
dim{(α0U

2 +α1UV +α2V
2)y0 +(β0U

2 +β1UV +β2V
2)y1 +(γ0U

2 +γ1UV +γ2V
2)y2 ∈

AnnS(f)3} ≤ 6 and dim{δ0U3 + δ1U
2V + δ2UV 2 + δ3V

3 ∈ AnnS(f)3} ≤ 1. Therefore, 
h3 = dimS3/ AnnS(f)3 ≥

(7)− 29 = 6.
4
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Summarizing, we have got that for any d ≥ 4 and for 2 ≤ i ≤ d − 2, it holds hi ≥ 6. 
To finish the proof it suffices to give an example with hi = 6, for any i, 2 ≤ i ≤ d − 2. 
We take the homogeneous polynomial of degree d:

f(x0, x1, x2, u, v) = udx0 + ud−1vx1 + vdx2.

It is easy to check that it has the desired h-vector. �
Remark 3.9. From Proposition 3.5 it follows that A = S/ AnnS(f) has minimum h-vector 
(1, 5, 6, 6, . . . , 6, 6, 5, 1) if and only if rankMi = rankN ′

i = 3 for any i with 2 ≤ i ≤ �d
2�. 

We note that none of these ranks can be strictly less than 3 due to the assumption that 
p0, p1, p2 are linearly independent.

Remark 3.10. From Propositions 3.7 and 3.8, it follows that for d = 4 the unique possible 
h-vector is (1, 5, 6, 5, 1). Instead, for d = 5, we can obtain only the maximal h-vector 
(1, 5, 7, 7, 5, 1), and the minimal h-vector (1, 5, 6, 6, 5, 1). For bigger values of d, also some 
intermediate cases are a priori possible.

4. Perazzo 3-folds and the WLP

From Theorem 2.5 and Remark 3.3, since the Perazzo 3-folds have vanishing first 
hessian, it follows that the associated algebras A fail the strong Lefschetz Property. In 
particular the map

×Ld−2 : [A]1 −→ [A]d−1

is not an isomorphism for every L ∈ [A]1. The goal of this section is to analyze whether 
the Artinian Gorenstein algebra A associated to a Perazzo 3-fold X ⊂ P 4 has the WLP. 
If d = 3, clearly A fails also WLP. But Gondim has proved that, for any Perazzo 3-fold 
of degree 4, A has the WLP ([11], Theorem 3.5). More precisely, we will see that, in any 
degree d ≥ 5, WLP holds when A has minimum h-vector and fails when it has maximum 
h-vector.

Theorem 4.1. Let X ⊂ P 4 be a Perazzo 3-fold of degree d ≥ 5 and equation

f = x0p0(u, v) + x1p1(u, v) + x2p2(u, v) + g(u, v) ∈ Rd = K[x0, x1, x2, u, v]d.

Let S = K[y0, y1, y2, U, V ] be the ring of differential operators on R. If A = S/ AnnS(f)
has maximum h-vector, then A fails WLP.

Proof. According to the parity of the socle degree of A, we distinguish two cases.
Case 1: d is odd. Write d = 2r+1. To show that A fails WLP, we will prove that for any 
L ∈ [A]1, the multiplication map
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×L : [A]r −→ [A]r+1

is not bijective. By Theorem 2.5, it is enough to see the vanishing of the r-th Hessian 
hessrf of f = x0p0(u, v) + x1p1(u, v) + x2p2(u, v) + g(u, v) with respect to a suitable 
K-basis B of [A]r. First we can notice that a basis B made of classes with a monomial 
representative always exists. So, Hessrf is just a submatrix of dimension hr × hr of the 
following matrix:

( ∂2rf

∂uα∂vβ∂xγ
0∂x

δ
1∂x

η
2

)
α+β+γ+δ+η=2r

where monomials are lexicographic ordered (for simplicity). Knowing that f is linear in 
the variables x0, x1, x2, the above matrix can be partially computed as:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2rf

∂u2r
∂2rf

∂u2r−1∂v
··· ∂2rf

∂ur∂vr
∂2r−1p0
∂u2r−1

∂2r−1p0
∂u2r−2∂v

··· ∂2r−1p2
∂ur∂vr−1 0 ··· 0

∂2rf

∂u2r−1∂v

∂2rf

∂u2r−2∂v2 ··· ∂2rf

∂ur−1∂vr+1
∂2r−1p0
∂u2r−2∂v

∂2r−1p0
∂u2r−3∂v2 ...

∂2r−1p3
∂ur−1∂vr 0 ··· 0

...
...

. . .
...

...
...

. . .
...

...
. . .

...
∂2rf

∂ur∂vr
∂2rf

∂ur−1∂vr+1 ··· ∂2rf

∂ur−1∂v2r
∂2r−1p0

∂ur−1∂vr
∂2r−1p0

∂ur−2∂vr+1 ...
∂2r−1p2
∂u2r−1 0 ··· 0

∂2r−1p0
∂ur−1∂vr ··· ··· ∂2r−1p0

∂ur−1∂vr 0 ··· ··· 0 0 ··· 0

...
...

. . .
...

...
...

. . .
...

...
. . .

...
∂2r−1p2

∂ur∂vr−1 ··· ··· ∂2r−1p2
∂u2r−1 0 ··· ··· 0 0 ··· 0

0 ··· ··· 0 0 ··· ··· 0 0 ··· 0
...

. . . . . .
...

...
. . . . . .

...
...
. . .

...
0 ··· ··· 0 0 ··· ··· 0 0 ··· 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The three vertical (respectively, horizontal) blocks are composed respectively by r +
1, 3r, 

(
r+4
4
)
− (4r + 1) columns (respectively, rows). Thus every possible choice of a 

hr × hr submatrix turns out to have at least one all zero sub-submatrix of size (hr −
(r+1)) × (hr − (r+1)). We now use the hypothesis of A to have maximum h-vector and 
Proposition 3.7 to obtain that hr = 2r + 3. We have just proved that Hessrf , matrix of 
dimension (2r + 3) × (2r + 3), has one all zero submatrix of dimension (r + 2) × (r + 2): 
this implies that hessrf identically vanishes.

Case 2: d is even. Write d = 2r + 2. Note that, since the h-vector is maximum, then 
hr = hr+1 = hr+2. Using again the hessian criterion of Watanabe’s (Theorem 2.5), we 
will check that for any L ∈ [A]1, the multiplication map

×L2 : [A]r −→ [A]r+2

is not bijective. This implies that for any L ∈ [A]1, the multiplication map
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×L : [A]r −→ [A]r+1

is not bijective and, hence, A fails the WLP.
Same adapted argument of the previous case can be used also here. In fact, the matrix 

to be considered is Hessrf which is now of size (2r + 4) × (2r + 4) which is even bigger 
than the previous case. Thus, as discussed above, its determinant is always zero. �

In contrast with the last result we have that if an Artinian Gorenstein algebra A
associated to a Perazzo 3-fold has minimum h-vector, then A has the WLP. Our proof 
uses Green’s theorem that we recall for sake of completeness.

Theorem 4.2. Let A = R/I be an Artinian graded algebra and let L ∈ A1 be a general 
linear form. Let ht be the entry of degree t of the h-vector of A. Then the degree t entry 
h′
t of the h-vector of R/(I, L) satisfies the inequality:

h′
t ≤ (ht)<t> for all t ≥ 1.

Proof. See [13, Theorem 1]. �
Theorem 4.3. Let X ⊂ P 4 be a Perazzo 3-fold of degree d ≥ 5 and equation

f = x0p0(u, v) + x1p1(u, v) + x2p2(u, v) + g(u, v) ∈ R = K[x0, x1, x2, u, v]d.

Let S = K[y0, y1, y2, U, V ] be the ring of differential operators on R. If A = S/ AnnS(f)
has minimum h-vector, then A has WLP.

Proof. For 5 ≤ d ≤ 7 see next section where a full classification of Perazzo 3-folds with 
minimal h-vector is given. Assume d ≥ 8. By the minimality assumption, h2 = h3 =
· · · = hd−2 = 6. By [23, Proposition 2.1], if for a general linear form L ∈ [A]1, the 
multiplication map

×L : [A]2 −→ [A]3

is bijective, then

×L : [A]1 −→ [A]2

is injective, and for all j ≥ 2,

×L : [A]j −→ [A]j+1

is surjective, therefore A has the WLP. By the symmetry property of Artinian Gorenstein 
algebras,
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×L : [A]2 −→ [A]3

is bijective if and only if

×L : [A]d−3 −→ [A]d−2

is bijective. So, let us prove the bijection of this last map. To this end, for a general 
linear form L ∈ [A]1, we consider the exact sequence:

[A]d−3 −→ [A]d−2 −→ [S/(AnnS(f), L)]d−2 −→ 0.

It follows that ×L : [A]d−3 −→ [A]d−2 is bijective if and only if [S/(AnnS(f), L)]d−2 = 0. 
Using the hypothesis d − 2 ≥ 6 (and, hence, hd−2 ≤ d − 2) and Theorem 4.2 we get

dim[S/(AnnS(f), L)]d−2 ≤ (hd−2)<d−2> = 0

which proves what we want. �
Remark 4.4. As a consequence of Theorem 4.3, all forms of degree d which define a 
Perazzo 3-fold with minimum h-vector are examples of forms with zero first order hessian, 
and all hessians of order t different from zero, for 2 ≤ t ≤ �d

2�.

For Gorenstein Artinian algebras associated to Perazzo 3-folds X in P 4 and with inter-
mediate h-vector both possibilities occur: there are examples failing WLP and examples 
satisfying WLP as next example shows.

Example 4.5. 1.- Let X ⊂ P 4 be the Perazzo 3-fold of equation

f(x0, x1, x2, u, v) = u6x0 + (u2v4 + u4v2)x1 + v6x2 ∈ K[x0, x1, x2, u, v]7.

Let S = K[y0, y1, y2, U, V ] be the ring of differential operators on R. We have

AnnS(f) = 〈y2
0 , y

2
1 , y

2
2 , y0y1, y0y2, y1y2, y0V, y2U, y0U

2 + 15y1U
2 − 15y1V

2 − y2V
2,

U3V − UV 3, 15y1U
4 − y2V

4, UV 5, V 7, U7〉.

Therefore, the Artinian Gorenstein algebra A = S/AnnS(f) has h-vector: (1, 5, 7, 8, 8,
7, 5, 1). Using Macaulay2 [20] we check that for a general linear form L ∈ [A]1, the 
multiplication map

×L : [A]3 −→ [A]4

is bijective and, hence, A satisfies the WLP. It does not have the SLP because for any 
linear form L ∈ [A]1
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×L3 : [A]2 −→ [A]5

is not surjective.
2.- Let X ⊂ P 4 be the Perazzo 3-fold of equation

f(x0, x1, x2, u, v) = u6x0 + u3v3x1 + v6x2 ∈ K[x0, x1, x2, u, v]7.

Let S = K[y0, y1, y2, U, V ] be the ring of differential operators on R. We have

AnnS(f) = 〈y2
0 , y

2
1 , y

2
2 , y0y1, y0y2, y1y2, y0v, y2u, 20y1U

3 − y2V
3,

y0U
3 − 20y1V

3, UV 4, U4V, V 7, U7〉.

Therefore, the Artinian Gorenstein algebra A = S/AnnS(f) has h-vector: (1, 5, 7, 9, 9,
7, 5, 1). Computing the third hessian, since it results to be zero, we get that for any 
linear form L ∈ [A]1, the multiplication map

×L : [A]3 −→ [A]4

is not bijective and, hence, A fails the WLP.

5. On the classification of certain Perazzo 3-folds of degree at least 5

The goal of this section is to classify all Perazzo 3-folds X in P 4 of degree 
d ≥ 5 whose associated Artinian Gorenstein algebra S/ AnnS(f) has h-vector: 
(1, 5, 6, 6, · · · , 6, 6, 5, 1). As a corollary we will also classify all Perazzo 3-folds 
X in P 4 of degree 5 whose associated Artinian Gorenstein algebra S/ AnnS(f) has the 
WLP.

We start the section with some technical lemmas and remarks.

Lemma 5.1. Let f1 = p0(u, v)x0+p1(u, v)x1+p2(u, v)x2 and f2 = q0(u, v)x0+q1(u, v)x1+
q2(u, v)x2 be two Perazzo 3-folds of degree d in P 4 such that 〈p0, p1, p2〉 = 〈q0, q1, q2〉 ⊂
K[u, v]d−1. Then, the h-vectors of S/ AnnS(f1) and S/ AnnS(f2) coincide.

Proof. By [17, Proposition A7] it is enough to prove that f1 and f2 define projectively 
equivalent 3-folds in P 4. Write q0(u, v) = λ0p0(u, v) + λ1p1(u, v) + λ2p2(u, v), q1 =
μ0p0(u, v) + μ1p1(u, v) + μ2p2(u, v), q3 = ρ0p0(u, v) + ρ1p1(u, v) + ρ2p2(u, v). We have

f2 = q0(u, v)x0 + q1(u, v)x1 + q2(u, v)x2

= (λ0p0(u, v) + λ1p1(u, v) + λ2p2(u, v))x0 + (μ0p0(u, v) + μ1p1(u, v)+

+ μ2p2(u, v))x1 + (ρ0p0(u, v) + ρ1p1(u, v) + ρ2p2(u, v))x2

= (λ0x0 + μ0x1 + ρ0x2)p0(u, v) + (λ1x0 + μ1x1 + ρ1x2)p1(u, v)+

+ (λ2x0 + μ2x1 + ρ2x2)p2(u, v).
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Therefore, f1 and f2 define projectively equivalent hypersurfaces in P 4. �
Remark 5.2. We fix integers d ≥ 5 and 2 ≤ k ≤ �d

2�. We keep the notations introduced 
in Section 3. If rankMk = 3, then rankAk ≤ 3, rankBk ≤ 3 and rank Ck ≤ 3.

We will now explain the geometrical meaning of the rank of the matrices Ak, Bk, Ck
introduced in Section 3. To this end, we recall some basic facts about symmetric tensors 
in two variables. For more details see [17], [24] and [2].

Let us fix an integer t ≥ 3 and consider the vector space K[u, v]t of forms of degree t. 
Its elements can also be interpreted as symmetric tensors in two variables; by definition 
the Waring rank, or symmetric rank, of p ∈ K[u, v]t is the minimum integer r such that 
there exist linear forms l1, . . . , lr ∈ K[u, v]1 such that p = lt1 + · · · + ltr. In particular, a 
symmetric tensor p has Waring rank 1 if p = lt for a suitable linear form l, i.e. p is a 
pure power of degree t.

In the projective space P t, naturally identified with P (K[u, v]t), the set of (equivalence 
classes of) forms of Waring rank 1 is the image of the t-tuple Veronese embedding of P 1

in P t, that is the rational normal curve Ct of degree t. We recall that, for any r ≥ 1, the 
r-secant variety of Ct is

σr(Ct) = ∪p1,...,pr∈Ct
〈p1, . . . , pr〉.

Clearly Ct = σ1(Ct) ⊂ σ2(Ct) ⊂ · · · , and a general element of σr(Ct) \ σr−1(Ct) is a 
symmetric tensor of Waring rank r, but if r > 1 σr(Ct) contains also tensors of Waring 
rank > r. The dimension of σr(Ct) is min{2r−1, t}. Moreover, for any r < t+1

2 , σr−1(Ct)
is the singular locus of σr(Ct) (see [26, Proposition 1.2.2 and Corollary 1.2.3]).

We recall also that the tangential surface of Ct, TCt, is the closure of the union of the 
embedded tangent lines to Ct. The tangent line at the point lt1 ∈ Ct is the set of tensors 
that can be written in the form lt−1

1 l2, with l2 a linear form. Similarly the osculating 
3-fold of Ct, T 2Ct, is the closure of the union of the embedded osculating planes to Ct, 
and the osculating plane at lt1 is the set of tensors that can be written in the form lt−2

1 m, 
with m a form of degree 2. We are now ready to give the desired interpretation of the 
rank of the matrices introduced in Section 3. We state and prove Proposition 5.3 for the 
form p0 and the matrices Ak; the analogous results hold true also for p1, p2, and their 
respectively catalecticant matrices Bk, Ck.

Proposition 5.3. We fix an integer d ≥ 5 and we keep the notations introduced in Sec-
tion 3. It holds:

(1) If rankAk = 1 for some 2 ≤ k ≤ �d+1
2 � (and, hence, for all k), then p0 = �d−1 for 

some � ∈ K[u, v]1.
(2) If rankAk = 2 for some 3 ≤ k ≤ �d+1

2 � (and, hence, for all k), then either p0 =
�d−1
1 + �d−1

2 or p0 = �d−2
1 �2 for some �1, �2 ∈ K[u, v]1.
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(3) If rankAk = 3 for some 4 ≤ k ≤ �d+1
2 � (and, hence, for all k), then either p0 =

�d−1
1 +�d−1

2 +(λ�1 +μ�2)d−1 or p0 = �d−1
1 +�d−2

2 (λ�1 +μ�2) for some �1, �2 ∈ K[u, v]1
and λ, μ ∈ K∗.

Proof. Let r be any integer such that r + 1 ≤ k. From [24, Theorem 1.3], it follows that 
all the minors of order r + 1 of Ak vanish if and only if [p0] ∈ σr(Cd−1). For r = 1, 
this gives (1). For r = 2, we get that if Ak has rank 2, then p0 ∈ σ2(Cd−1). From [2, 
Corollary 26], it follows that either p0 has Waring rank 2 or p0 ∈ TCd−1; this proves (2). 
Similarly, for r = 3, rankAk = 3 implies that p0 ∈ σ3(Cd−1). So, either the Waring rank 
of p0 is 3, or p0 belongs to the join of Cd−1 and its tangential surface ([2, Corollary 26]). 
This proves (3). �
Theorem 5.4. The Artinian Gorenstein algebra S/ AnnS(f) associated to a Perazzo 3-
fold of degree d ≥ 5 has h-vector: (1, 5, 6, 6, · · · 6, 6, 5, 1) if and only if, after a 
possible change of coordinates, one of the following cases holds:

(i) f(x0, x1, x2, u, v) = ud−1x0 + ud−2vx1 + ud−3v2x2 + aud + bud−1v + cud−2v2 with 
a, b, c ∈ K, or

(ii) f(x0, x1, x2, u, v) = ud−1x0+ud−2vx1+vd−1x2+aud+bud−1v+cvd with a, b, c ∈ K, 
or

(iii) f(x0, x1, x2, u, v) = ud−1x0 + (λu + μv)d−1x1 + vd−1x2 + aud + b(λu + μv)d + cvd

with λ, μ ∈ K∗ and a, b, c ∈ K.

Proof. As observed in Remark 3.9, the h-vector is minimal if and only if rankMk =
rankN ′

k = 3 for any k. A straightforward computation shows that for any f as in 
(i), (ii) or (iii) one has rankMk = rankN ′

k = 3 for any k and, therefore, S/ AnnS(f)
has h-vector (1, 5, 6, · · · 6, 5, 1). To prove the converse, we first observe that if 
rankMk = rankN ′

k = 3 for any k, then the ranks of Ak, Bk, Ck, Gk are all bounded above 
by 3. We analyze first the various possibilities for p0, p1, p2.

(I) d ≥ 7 and rankAk = rankBk = rank Ck = 3 for 4 ≤ k ≤ �d+1
2 � and p0, p1, p2 all 

have Waring rank 3. We use [24, Corollary 1.2]: the spaces of the columns of Ak, Bk, Ck
coincide, so there exist linear forms l1, l2, l3 and suitable constants such that

p0 = λ0l
d−1
1 + μ0l

d−1
2 + ν0l

d−1
3

p1 = λ1l
d−1
1 + μ1l

d−1
2 + ν1l

d−1
3

p2 = λ2l
d−1
1 + μ2l

d−1
2 + ν2l

d−1
3 .

Since p0, p1, p2 are linearly independent, the matrix 

(
λ0 μ0 ν0
λ1 μ1 ν1
λ2 μ2 ν2

)
is invertible, so 

〈p0, p1, p2〉 = 〈ld−1
0 , ld−1

1 , ld−1
2 〉. In view of Lemma 5.1 in f we can replace p0, p1, p2 with 

ld−1
0 , ld−1

1 , ld−1
2 .
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(II) d ≥ 7 and rankAk = 3 for 4 ≤ k ≤ �d+1
2 �, but p0 has Waring rank strictly 

> 3. So from Proposition 5.3 (3), p0 is of the form �d−1
1 + �d−2

2 (α�1 + β�2) for some 
�1, �2 ∈ K[u, v]1 and α, β ∈ K∗. So up to the change of variables that sends l1 into u, 
and l2 into v, p0 = ud−1 + αuvd−2 + βvd−1. Then

M3 =

⎛
⎜⎜⎜⎜⎝

1 0 0 b0 b1 b2 c0 c1 c2
0 0 0
...

...
0 0 α bd−3 bd−2 bd−1 cd−3 cd−2 cd−1
0 α β bd−2 bd−1 bd cd−2 cd−1 cd

⎞
⎟⎟⎟⎟⎠ .

From rankM3 < 4 it follows b1 = · · · = bd−3 = c1 = · · · = cd−3 = 0. Therefore

p1 = b0u
d−1 + bd−2uv

d−2 + bd−1v
d−1, p2 = c0u

d−1 + cd−2uv
d−2 + cd−1v

d−1,

and we can replace p0, p1, p2 with ud−1, uvd−2, vd−1.
(III) rankAk = 2 for 3 ≤ k ≤ �d+1

2 � and p0 has Waring rank 2, so it can be written 
p0 = ud−1 + vd−1. Then M3 is as in case (II) with α = 0, β = 1 and

M2 =

⎛
⎜⎜⎝

1 0 b0 b1 c0 c1
0 0 b1 b2 c1 c2
...

...
...

...
...

...
0 1 bd−2 bd−1 cd−2 cd−1

⎞
⎟⎟⎠ .

From rankM2 < 4 we deduce that

rank

⎛
⎝ b1 b2

...
...

bd−3 bd−2

⎞
⎠ < 2, rank

⎛
⎝ c1 c2

...
...

cd−3 cd−2

⎞
⎠ < 2, rank

(
b1 b2 . . . bd−2
c1 c2 . . . cd−2

)
< 2.

Therefore

(b1, . . . , bd−2) = (λd−3, λd−4μ, . . . , μd−3), (c1, . . . , cd−2) = (σd−3, σd−4ρ, . . . , ρd−3),

for suitable λ, μ, σ, ρ ∈ K. We get:

p1 = b0u
d−1 + uv((d− 1)λd−3ud−3 +

(
d− 1

2

)
λd−4μud−4v + · · · ) + bd−1v

d−1,

p2 = c0u
d−1 + uv((d− 1)σd−3ud−3 +

(
d− 1

2

)
σd−4ρud−4v + · · · ) + cd−1v

d−1.

We can also write

p1 = b0u
d−1 + uvφd−3 + bd−1v

d−1, p2 = c0u
d−1 + kuvφd−3 + cd−1v

d−1
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where φd−3 is a form of degree d −3 and k ∈ K, because (b1, . . . , bd−2) and (c1, . . . , cd−2)
are proportional. We can assume b0 = c0 = 0 and we get vd−1 ∈ 〈p0, p1, p2〉, hence 
ud−1, uvφd−3 ∈ 〈p0, p1, p2〉. Finally, adding to uvφd−3 suitable multiples of ud−1, vd−1, 
we get (λu + μv)d−1 ∈ 〈p0, p1, p2〉.

(IV) rankAk = 2 for 3 ≤ k ≤ �d+1
2 � but p0 has Waring rank > 2, so up to a change 

of variables p0 = ud−2v.

M2 =

⎛
⎜⎜⎝

0 1 b0 b1 c0 c1
1 0 b1 b2 c1 c2
...

...
0 0 bd−2 bd−1 cd−2 cd−1

⎞
⎟⎟⎠

has rank 3, therefore

rank

⎛
⎝ b2 b3 c2 c3

...
...

...
...

bd−2 bd−1 cd−2 cd−1

⎞
⎠ < 2,

and arguing in a similar way to (III), we conclude that 〈p0, p1, p2〉 is either of the form 
〈ud−1, ud−2v, (λu + μv)d−1〉, or 〈ud−1, ud−2v, ud−3v2〉.

(V) rankAk = rankBk = rank Ck = 1, then p0, p1, p2 are all pure powers of degree 
d − 1.

(VI) Let π be the 2-plane generated by the polynomials p0, p1, p2. If d = 5, π ⊂
P 4 = P (K[u, v]4). The tangential variety TC4 has codimension 2, so the intersection 
π∩TC4 �= ∅. If π intersects TC4 outside its singular locus C4, up to a change of variables 
u3v ∈ π and we conclude as in (IV); otherwise, we are in the situation of (V). If d = 6, 
π ⊂ P 5 = P (K[u, v]5). Now σ2(C5) has codimension 2 and therefore π ∩ σ2(C5) �= ∅. 
Therefore we are either in the situation of (III) or of (IV).

We have proved that for any d ≥ 5, if f defines a Perazzo 3-fold and S/ AnnS(f) has 
minimal h-vector, then the polynomials p0, p1, p2 are as in (i), or (ii), or (iii).

It remains to find out how we can choose the polynomial g in each of the cases. 
From Proposition 3.5 we deduce that the only condition that g has to satisfy is 
AnnS(p0x0 + p1x1 + p2x2)3 = AnnS(f − g)3 = AnnS(f)3. In other words, we impose 
that g is annihilated by a system of generators of AnnS(f)3.

(i) If f(x0, x1, x2, u, v) = ud−1x0 +ud−2vx1 +ud−3v2x2 +g, we have that AnnS(f)3 =
〈V 3〉 and so g = g0u

d + g1u
d−1v + g2u

d−2v2.
(ii) If f(x0, x1, x2, u, v) = ud−1x0 + ud−2vx1 + vd−1x2 + g, we have that AnnS(f)3 =

〈UV 2〉. This gives that 
∑d−1

i=2 gi
(
d
i

)
(k− i)i(i − 1)uk−i−1vi−2 = 0, so g2 = · · · = gd−1 = 0. 

Thus we get g = g0u
d + g1u

d−1v + gdv
d.

(iii) If f(x0, x1, x2, u, v) = ud−1x0 + (λu + μv)d−1x1 + vd−1x2 + g, we have that 
AnnS(f)3 = 〈μU2V − λUV 2〉. Then we have the condition
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d−1∑
i=2

(
k − 3
i− 1

)
(μgi − λgi+1)ud−k−2vi−1 = 0 ⇐⇒ μgi − λgi+1 = 0, i = 1, . . . , k − 2.

So we can collect g1 and complete the d-th power to obtain g = aud+b(λu +μv)d+cvd. �
Remark 5.5. As we noticed in Lemma 5.1, the Hilbert function of the algebra S/ AnnS(f)
depends only on the plane π = 〈p0, p1, p2〉 ⊂ Pd−1 and not on the choice of the three 
generators. In Theorem 5.4 we have proved that the h-vector is minimal if and only if 
the plane π is in one of the following positions: it is an osculating plane to the rational 
normal curve Cd−1 (case (i)), or it contains the tangent line to Cd−1 at a point and meets 
Cd−1 also at a second point (case (ii)), or it intersects Cd−1 at three distinct points (case 
(iii)).

Remark 5.6. In Theorem 5.4, we have obtained a complete characterization of the poly-
nomials f such that A = S/ AnnS(f) has minimum h-vector for any d ≥ 5. This allows 
us to conclude with a direct verification the proof of Theorem 4.3, proving the WLP of 
these algebras in the cases 5 ≤ d ≤ 7.

Corollary 5.7. The Artinian Gorenstein algebra S/ AnnS(f) associated to a Perazzo 3-
fold of degree 5 has the WLP if and only if, after a possible change of coordinates, one 
of the following cases holds:

(i) f(x0, x1, x2, u, v) = u4x0+u3vx1+u2v2x2+au5+bu4v+cu3v2 ∈ R5 with a, b, c ∈ K, 
or

(ii) f(x0, x1, x2, u, v) = u4x0 + u3vx1 + v4x2 + au5 + bu4v + cv5 ∈ R5 with a, b, c ∈ K, 
or

(iii) f(x0, x1, x2, u, v) = u4x0 + (λu + μv)4x1 + v4x2 + au5 + b(λu + μv)5 + cv5 ∈ R5
with λ, μ ∈ K∗ and a, b, c ∈ K.

Proof. It follows from Theorems 5.4, 4.1, and 4.3. �
Note that, as consequence of the results of Gordan-Noether, Corollary 5.7 gives also 

a complete classification of threefolds of degree 5 in P 4 with vanishing hessian.

6. Final comments

In this last section, we give a short geometrical description of the hypersurfaces of 
Theorem 5.4 when a = b = c = 0.

Case (i) corresponds to the union of the classic cubic Perazzo 3-fold in P 4 of equation: 
u2x0 + uvx1 + v2x2 = 0 with the non-reduced hyperplane of equation: ud−3 = 0. To 
describe the other two hypersurfaces, we first recall some known geometric properties of 
hypersurfaces with vanishing hessian. Let X = V (f) ⊂ PN be such a hypersurface with 
hessf = 0.
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We denote by

∇f : PN ��� (PN )∗

its polar map defined by

∇f (p) =
(

∂f

∂x0
(p), ∂f

∂x1
(p), . . . , ∂f

∂xN
(p)

)
,

and by

γ : X ��� (PN )∗

the restriction of ∇f to X, i.e. the Gauss map of X, associating to each smooth point 
of X its embedded tangent space. The image of γ is the dual variety X∗ of X. Let 
Z = ∇f (PN ) be the closure of the image of the polar map. Then X∗ � Z � (PN )∗ ([26, 
Corollary 7.2.8]). Moreover, if N = 4, Z is a cone with vertex a line over an irreducible 
plane curve, and its dual Z∗ is a rational plane curve in P 4, naturally identified with the 
bidual space (P 4)∗∗ ([26, Lemma 7.4.13]).

Let X be a Perazzo hypersurface of degree d in P 4 of equation (3.1). X contains the 
line L : x0 = x1 = x2 = 0 and the plane Π : u = v = 0. From [26, Sections 7.3 and 
7.4], it follows that Π is the singular locus of X with multiplicity d − 1; moreover, X∗

is a scroll surface of degree d, having the line Π∗ as directrix. In particular, Π∗ is also 
the vertex of Z, and the general plane ruling of the cone Z meets X∗ along a line of 
the scroll. The curve Z∗ is contained in Π and the hyperplanes containing Π cut on X, 
outside Π, a 1-dimensional family Σ of planes: they are all tangent to Z∗ and meet L. If 
p is general in X, then the fibre of the Gauss map γ−1(γ(p)) is the line 〈p, p′〉 where p′

is the tangency point to Z∗ of the plane of the family Σ passing through p.
We now see how this picture specializes if we consider the reduced, irreducible Perazzo 

3-fold X1 ⊂ P 4 of equation

f1(x0, x1, x2, u, v) = ud−1x0 + ud−2vx1 + vd−1x2,

case (ii) in Theorem 5.4. We use coordinates z0, . . . , z4 in (P 4)∗. The equation of Z, 
which expresses the algebraic dependence of p0, p1, p2, is zd−1

1 − zd−2
0 z2 = 0; the one of 

Z∗ is (d − 1)d−1xd−2
0 x2 + (d − 2)d−2xd−1

1 = 0. They both represent rational curves of 
degree d − 1 with a singular point of multiplicity d − 2 with only one tangent line.

In case (iii) we have

f2(x0, x1, x2, u, v) = ud−1x0 + (λu + μv)d−1x1 + vd−1x2 with λ, μ ∈ K∗.

For low values of d we have checked with the help of Macaulay2 ([20]) that Z is a cone 
over a rational curve of degree d −1 with (d−2)(d−3) distinct nodes. Its dual Z∗ results to 
2
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be a rational curve of degree 2d − 4. If d = 5, then Z∗ has degree 6 and it has 3 cuspidal 
points of multiplicity 3 at the fundamental points [1, 0, 0], [0, 1, 0], [0, 0, 1] and one node; 
if d = 6, then Z∗ has cuspidal points of multiplicity 4 at the fundamental points and 3
nodes; if d = 7, then Z∗ has cuspidal points of multiplicity 5 at the fundamental points 
and 6 nodes.
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