279 research outputs found

    ENPP1, premier exemple d’un dĂ©terminant gĂ©nĂ©tique commun Ă  l’obĂ©sitĂ© et au diabĂšte de type 2

    Get PDF
    L’obĂ©sitĂ©, en particulier ses formes sĂ©vĂšres, est l’un des principaux facteurs de risque de diabĂšte de type 2. Par ailleurs, l’explosion de l’épidĂ©mie d’obĂ©sitĂ© infantile s’accompagne de l’apparition de formes prĂ©coces de diabĂšte de type 2, avec un syndrome mĂ©tabolique et une intolĂ©rance au glucose dĂ©tectables dĂšs l’adolescence. Ces donnĂ©es suggĂšrent l’existence de dĂ©terminants molĂ©culaires primitifs communs entre obĂ©sitĂ© sĂ©vĂšre et prĂ©coce et diabĂšte de type 2, qui partageraient une insulinorĂ©sistance gĂ©nĂ©tiquement dĂ©terminĂ©e. Dans ce contexte, l’identification, sur la rĂ©gion chromosomique 6q liĂ©e Ă  la « diabĂ©sité », du gĂšne ENPP1 codant pour un inhibiteur du rĂ©cepteur de l’insuline, dont des variants codants et non codants contribuent au risque gĂ©nĂ©tique de cette affection, est un pas vers la dissection gĂ©nĂ©tique des obĂ©sitĂ©s les plus diabĂ©togĂšnes. Ces rĂ©sultats ouvrent des perspectives nouvelles vers le profilage gĂ©nĂ©tique et biologique des adolescents obĂšses, dans une optique de prĂ©vention et de traitement de la « diabĂ©sité » et de ses complications vasculaires.Clinical studies have established the strong link between obesity and type 2 diabetes, especially in children, where the rising prevalence of childhood severe obesity has preceded the recent emergence of early-onset forms of “diabesity”. These data suggested a common genetic background shared by both conditions, which was also supported by the identification by genome scans of several diabesity chromosomal regions of linkage. The genetic investigation of early-onset form of familial obesity linkage to chromosome 6q led to the identification of ENPP1, an inhibitor of the insulin receptor, as a possible molecular mechanism behind both obesity and type 2 diabetes. Analysis of the DNA variations of ENPP1 in 6,147 subjects showed association between a combination of variants and both childhood obesity, morbid or moderate obesity in adults and also with type 2 diabetes. This study provides a first molecular basis for the physiopathologic association between severe insulin resistance and obesity, and further type 2 diabetes, and offers a new perspective for prevention and treatment of these conditions

    Molecular Basis of Obesity: Current Status and Future Prospects

    Get PDF
    Obesity is a global health problem that is gradually affecting each continent of the world. Obesity is a heterogeneous disorder, and the biological causes of obesity are complex. The rapid increase in obesity prevalence during the past few decades is due to major societal changes (sedentary lifestyle, over-nutrition) but who becomes obese at the individual level is determined to a great extent by genetic susceptibility. In this review, we evidence that obesity is a strongly heritable disorder, and provide an update on the molecular basis of obesity. To date, nine loci have been involved in Mendelian forms of obesity and 58 loci contribute to polygenic obesity, and rare and common structural variants have been reliably associated with obesity. Most of the obesity genes remain to be discovered, but promising technologies, methodologies and the use of “deep phenotyping” lead to optimism to chip away at the ‘missing heritability’ of obesity in the near future. In the longer term, the genetic dissection of obesity will help to characterize disease mechanisms, provide new targets for drug design, and lead to an early diagnosis, treatment, and prevention of obesity

    Genetics of Obesity: What have we Learned?

    Get PDF
    Candidate gene and genome-wide association studies have led to the discovery of nine loci involved in Mendelian forms of obesity and 58 loci contributing to polygenic obesity. These loci explain a small fraction of the heritability for obesity and many genes remain to be discovered. However, efforts in obesity gene identification greatly modified our understanding of this disorder. In this review, we propose an overlook of major lessons learned from 15 years of research in the field of genetics and obesity. We comment on the existence of the genetic continuum between monogenic and polygenic forms of obesity that pinpoints the role of genes involved in the central regulation of food intake and genetic predisposition to obesity. We explain how the identification of novel obesity predisposing genes has clarified unsuspected biological pathways involved in the control of energy balance that have helped to understand past human history and to explore causality in epidemiology. We provide evidence that obesity predisposing genes interact with the environment and influence the response to treatment relevant to disease prediction

    Approaches to detect genetic effects that differ between two strata in genome-wide meta-analyses: Recommendations based on a systematic evaluation.

    Get PDF
    Genome-wide association meta-analyses (GWAMAs) conducted separately by two strata have identified differences in genetic effects between strata, such as sex-differences for body fat distribution. However, there are several approaches to identify such differences and an uncertainty which approach to use. Assuming the availability of stratified GWAMA results, we compare various approaches to identify between-strata differences in genetic effects. We evaluate type I error and power via simulations and analytical comparisons for different scenarios of strata designs and for different types of between-strata differences. For strata of equal size, we find that the genome-wide test for difference without any filtering is the best approach to detect stratum-specific genetic effects with opposite directions, while filtering for overall association followed by the difference test is best to identify effects that are predominant in one stratum. When there is no a priori hypothesis on the type of difference, a combination of both approaches can be recommended. Some approaches violate type I error control when conducted in the same data set. For strata of unequal size, the best approach depends on whether the genetic effect is predominant in the larger or in the smaller stratum. Based on real data from GIANT (>175 000 individuals), we exemplify the impact of the approaches on the detection of sex-differences for body fat distribution (identifying up to 10 loci). Our recommendations provide tangible guidelines for future GWAMAs that aim at identifying between-strata differences. A better understanding of such effects will help pinpoint the underlying mechanisms

    Structured diet and exercise guidance in pregnancy to improve health in women and their offspring: study protocol for the Be Healthy in Pregnancy (BHIP) randomized controlled trial

    Get PDF
    BackgroundEvidence from epidemiological and animal studies support the concept of programming fetal, neonatal, and adult health in response to in utero exposures such as maternal obesity and lifestyle variables. Excess gestational weight gain (GWG), maternal physical activity, and sub-optimal and excess nutrition during pregnancy may program the offspring\u27s risk of obesity. Maternal intake of dairy foods rich in high-quality proteins, calcium, and vitamin D may influence later bone health status. Current clinical practice guidelines for managing GWG are not founded on randomized trials and lack specific active intervention ingredients. The Be Healthy in Pregnancy (BHIP) study is a randomized controlled trial (RCT) designed to test the effectiveness of a novel structured and monitored Nutrition + Exercise intervention in pregnant women of all pre-pregnancy weight categories (except extreme obesity), delivered through prenatal care in community settings (rather than in hospital settings), on the likelihood of women achieving recommended GWG and a benefit to bone status of offspring and mother at birth and sixmonths postpartum.MethodsThe BHIP study is a two-site RCT that will recruit up to 242 participants aged \u3e18years at 12-17 weeks of gestation. After baseline measures, participants are randomized to either a structured and monitored Nutrition + Exercise (intervention) or usual care (control) program for the duration of their pregnancy. The primary outcome of the study is the percent of women who achieve GWG within the Institute of Medicine (IOM) guidelines. The secondary outcomes include: (1) maternal bone status via blood bone biomarkers during pregnancy; (2) infant bone status in cord blood; (3) mother and infant bone status measured by dual-energy absorptiometry scanning (DXA scan) at sixmonths postpartum; (4) other measures including maternal blood pressure, blood glucose and lipid profiles, % body fat, and postpartum weight retention; and (5) infant weight z-scores and fat mass at sixmonths of age.DiscussionIf effective, this RCT will generate high-quality evidence to refine the nutrition guidelines during pregnancy to improve the likelihood of women achieving recommended GWG. It will also demonstrate the importance of early nutrition on bone health in the offspring

    Two New Loci for Body-Weight Regulation Identified in a Joint Analysis of Genome-Wide Association Studies for Early-Onset Extreme Obesity in French and German Study Groups

    Get PDF
    Meta-analyses of population-based genome-wide association studies (GWAS) in adults have recently led to the detection of new genetic loci for obesity. Here we aimed to discover additional obesity loci in extremely obese children and adolescents. We also investigated if these results generalize by estimating the effects of these obesity loci in adults and in population-based samples including both children and adults. We jointly analysed two GWAS of 2,258 individuals and followed-up the best, according to lowest p-values, 44 single nucleotide polymorphisms (SNP) from 21 genomic regions in 3,141 individuals. After this DISCOVERY step, we explored if the findings derived from the extremely obese children and adolescents (10 SNPs from 5 genomic regions) generalized to (i) the population level and (ii) to adults by genotyping another 31,182 individuals (GENERALIZATION step). Apart from previously identified FTO, MC4R, and TMEM18, we detected two new loci for obesity: one in SDCCAG8 (serologically defined colon cancer antigen 8 gene; p = 1.85610 x 10(-8) in the DISCOVERY step) and one between TNKS (tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase gene) and MSRA (methionine sulfoxide reductase A gene; p = 4.84 x 10(-7)), the latter finding being limited to children and adolescents as demonstrated in the GENERALIZATION step. The odds ratios for early-onset obesity were estimated at similar to 1.10 per risk allele for both loci. Interestingly, the TNKS/MSRA locus has recently been found to be associated with adult waist circumference. In summary, we have completed a meta-analysis of two GWAS which both focus on extremely obese children and adolescents and replicated our findings in a large followed-up data set. We observed that genetic variants in or near FTO, MC4R, TMEM18, SDCCAG8, and TNKS/MSRA were robustly associated with early-onset obesity. We conclude that the currently known major common variants related to obesity overlap to a substantial degree between children and adults

    Loss-of-function mutations in SIM1 contribute to obesity and Prader-Willi-like features

    Get PDF
    Sim1 haploinsufficiency in mice induces hyperphagic obesity and developmental abnormalities of the brain. In humans, abnormalities in chromosome 6q16, a region that includes SIM1, were reported in obese children with a Prader-Willi–like syndrome; however, SIM1 involvement in obesity has never been conclusively demonstrated. Here, SIM1 was sequenced in 44 children with Prader-Willi–like syndrome features, 198 children with severe early-onset obesity, 568 morbidly obese adults, and 383 controls. We identified 4 rare variants (p.I128T, p.Q152E, p.R581G, and p.T714A) in 4 children with Prader-Willi–like syndrome features (including severe obesity) and 4 other rare variants (p.T46R, p.E62K, p.H323Y, and p.D740H) in 7 morbidly obese adults. By assessing the carriers’ relatives, we found a significant contribution of SIM1 rare variants to intra-family risk for obesity. We then assessed functional effects of the 8 substitutions on SIM1 transcriptional activities in stable cell lines using luciferase gene reporter assays. Three mutations showed strong loss-of-function effects (p.T46R, p.H323Y, and p.T714A) and were associated with high intra-family risk for obesity, while the variants with mild or no effects on SIM1 activity were not associated with obesity within families. Our genetic and functional studies demonstrate a firm link between SIM1 loss of function and severe obesity associated with, or independent of, Prader-Willi–like features.AmĂ©lie Bonnefond, Anne Raimondo, Fanny Stutzmann, Maya Ghoussaini, Shwetha Ramachandrappa, David C. Bersten, Emmanuelle Durand, Vincent Vatin, Beverley Balkau, Olivier Lantieri, Violeta Raverdy, François Pattou, Wim Van Hul, Luc Van Gaal, Daniel J. Peet, Jacques Weill, Jennifer L. Miller, Fritz Horber, Anthony P. Goldstone, Daniel J. Driscoll, John B. Bruning, David Meyre, Murray L. Whitelaw and Philippe Frogue

    The T-381C SNP in BNP gene may be modestly associated with type 2 diabetes: an updated meta-analysis in 49 279 subjects

    Get PDF
    A recent study reported an association between the brain natriuretic peptide (BNP) promoter T-381C polymorphism (rs198389) and protection against type 2 diabetes (T2D). As replication in several studies is mandatory to confirm genetic results, we analyzed the T-381C polymorphism in seven independent case-control cohorts and in 291 T2D-enriched pedigrees totalling 39 557 subjects of European origin. A meta-analysis of the seven case-control studies (n = 39 040) showed a nominal protective effect [odds ratio (OR) = 0.86 (0.79-0.94), P = 0.0006] of the CC genotype on T2D risk, consistent with the previous study. By combining all available data (n = 49 279), we further confirmed a modest contribution of the BNP T-381C polymorphism for protection against T2D [OR = 0.86 (0.80-0.92), P = 1.4 × 10−5]. Potential confounders such as gender, age, obesity status or family history were tested in 4335 T2D and 4179 normoglycemic subjects and they had no influence on T2D risk. This study provides further evidence of a modest contribution of the BNP T-381C polymorphism in protection against T2D and illustrates the difficulty of unambiguously proving modest-sized associations even with large sample size
    • 

    corecore