5 research outputs found

    Trace Metal Chemistry in the Water Column of the Angola Basin - A Contribution to the International GEOTRACES Program - Cruise No. M121, November 22, – December 27, 2015, Walvis Bay (Namibia) – Walvis Bay (Namibia)

    Get PDF
    Meteor Cruise M121 was dedicated to the investigation of the distribution of dissolved and particulate trace metals and their isotopic compositions (TEIs) in the full water column of the Angola Basin and the northernmost Cape Basin. A key aim was to determine the driving factors for the observed distributions, which includes the main external inputs, as well as internal cycling and ocean circulation. The research program of the cruise is official part of the international GEOTRACES program (www.geotraces.org) and cruise M121 corresponds to GEOTRACES cruise GA11. Subject of the cruise was the trace metal clean and contamination-free sampling of waters and particulates for subsequent analyses of the TEIs in the home laboratories of the national and international participants. Besides a standard rosette for the less contaminant prone metals, trace metal clean sampling was realized by using for the first time a new dedicated, coated trace metal clean rosette equipped with Teflon-coated GO-FLO bottles operated via a plastic coated cable from a mobile winch of GEOMAR Kiel. The particulate samples were collected under trace metal clean conditions using established in-situ pump systems operated from Meteor’s Aramid line. The cruise track led from Walvis Bay northwards along the West African margin until 3°S, then turned west until the Zero Meridian, which was followed southwards until 30°S. Then the cruise track turned east again until the Namibian margin was reached and then completed the near shore track northwards until Walvis Bay. The track crossed areas of major external inputs including dust from the Namib Desert and exchange with the west African continental margin and with the oxygen depleted shelf sediments of the Benguela upwelling, as well as with the plume of the Congo outflow, that was followed from its mouth northwards. Our investigations of internal cycling included the extremely high productivity associated with the Benguela Upwelling and the elevated productivity of the Congo plume contrasting with the extremely oligotrophic waters of the southeastern Atlantic Gyre. The links between TEI biogeochemistry and the nitrogen cycle forms an important aspect of our study. The major water masses contributing the Atlantic Meridional Overturning Circulation were sampled in order to investigate if particular TEI signatures are suitable as water mass tracers, in particular near the ocean margin and in the restricted deep Angola Basin. A total of 51 full water column stations were sampled for the different dissolved TEIs, which were in most cases accompanied by sampling for particulates and radium isotopes using the in-situ pumps. In addition, surface waters were continuously sampled under trace metal clean conditions using a towed fish and aerosol and rain samples were continuously collected

    Hafnium and neodymium isotopes and REY distribution in the truly dissolved, nanoparticulate/colloidal and suspended loads of rivers in the Amazon Basin, Brazil

    No full text
    Radiogenic isotopes in river sediments and river waters have been widely used in provenance studies, as these samples naturally integrate the geology/chemistry of the entire catchment. While the Hf and Nd isotope systems are coupled during igneous processes, they are decoupled during supergene processes at the Earth's surface, which is reflected by the isotope composition of riverine sediments. We present the first data for both Hf and Nd isotope compositions of the dissolved (0.2 mu m-filtrates rich in nanoparticles and colloids, NPCs) and the truly dissolved (1 kDa-ultrafiltrates) load of rivers. Hafnium and Nd isotope compositions and concentrations of the Rare Earths and Yttrium (REY) and Hf were determined for suspended particles (>0.2 mu m) as well as for the dissolved and the truly dissolved load of the Rio Solimoes, the Amazon's largest tributary draining the Andes, and of the Rio Negro, an organic NPC- and particle-rich river draining the rainforest of northern Amazonia. We also analyzed the Nd isotope compositions of suspended sediments and 0.2 mu m-filtered water samples from the Amazon River and its tributaries Rio Tapajos, Rio Xingu and Rio Jari. Our novel results clearly show that the decoupling of the Hf and Nd isotope systems is related to incongruent weathering processes on the continent, as this decoupling can already be observed in the different Hf and Nd pools, i.e. in the particulate, the NPC-dominated dissolved and the truly dissolved load of rivers. In the Rio Negro and Rio Solimoes, a strong particle size-dependent difference in Hf isotope composition is observed. Values of epsilon(Hf) become more radiogenic as filter poresize decreases, which can be related to the density- and size-dependent distribution of Hf-rich minerals, e.g. zircons, and their absence from the truly dissolved pool. In contrast, the Nd isotope composition of Amazonian river waters reflects that of their catchment geology. Tributaries draining the Precambrian Brazilian and Guyana shields show very unradiogenic epsilon(Nd) values of -19 to -25 in their dissolved load, whereas the Rio Solimoes draining the Andes yields a more radiogenic eNd signal of only -7. The dissolved Nd isotope composition of the Amazon is dominated by its Andean tributaries and averages at -8. Although Nd isotope compositions are thought to not being fractionated by Earth surface processes, significant differences of 1.3-1.9 epsilon-units can be observed between the dissolved and suspended loads in the Amazon River and its main tributary, the Rio Solimoes. In these rivers, the dissolved load is more radiogenic than the suspended sediment, which is likely due to incongruent weathering and related mineral sorting in the Andean headwaters. In contrast, the organic-rich and mineral-poor shield rivers do not show a difference between the truly dissolved, dissolved and suspended load, as the Nd in all these pools is controlled by surface- and solution-complexation and hence isotopically homogenized by continuous exchange and reequilibration. (C) 2017 Elsevier Ltd. All rights reserved

    Hafnium and neodymium isotopes and REY distribution in the truly dissolved, nanoparticulate/colloidal and suspended loads of rivers in the Amazon Basin, Brazil

    No full text
    Radiogenic isotopes in river sediments and river waters have been widely used in provenance studies, as these samples naturally integrate the geology/chemistry of the entire catchment. While the Hf and Nd isotope systems are coupled during igneous processes, they are decoupled during supergene processes at the Earth's surface, which is reflected by the isotope composition of riverine sediments. We present the first data for both Hf and Nd isotope compositions of the dissolved (0.2 mu m-filtrates rich in nanoparticles and colloids, NPCs) and the truly dissolved (1 kDa-ultrafiltrates) load of rivers. Hafnium and Nd isotope compositions and concentrations of the Rare Earths and Yttrium (REY) and Hf were determined for suspended particles (>0.2 mu m) as well as for the dissolved and the truly dissolved load of the Rio Solimoes, the Amazon's largest tributary draining the Andes, and of the Rio Negro, an organic NPC- and particle-rich river draining the rainforest of northern Amazonia. We also analyzed the Nd isotope compositions of suspended sediments and 0.2 mu m-filtered water samples from the Amazon River and its tributaries Rio Tapajos, Rio Xingu and Rio Jari. Our novel results clearly show that the decoupling of the Hf and Nd isotope systems is related to incongruent weathering processes on the continent, as this decoupling can already be observed in the different Hf and Nd pools, i.e. in the particulate, the NPC-dominated dissolved and the truly dissolved load of rivers. In the Rio Negro and Rio Solimoes, a strong particle size-dependent difference in Hf isotope composition is observed. Values of epsilon(Hf) become more radiogenic as filter poresize decreases, which can be related to the density- and size-dependent distribution of Hf-rich minerals, e.g. zircons, and their absence from the truly dissolved pool. In contrast, the Nd isotope composition of Amazonian river waters reflects that of their catchment geology. Tributaries draining the Precambrian Brazilian and Guyana shields show very unradiogenic epsilon(Nd) values of -19 to -25 in their dissolved load, whereas the Rio Solimoes draining the Andes yields a more radiogenic eNd signal of only -7. The dissolved Nd isotope composition of the Amazon is dominated by its Andean tributaries and averages at -8. Although Nd isotope compositions are thought to not being fractionated by Earth surface processes, significant differences of 1.3-1.9 epsilon-units can be observed between the dissolved and suspended loads in the Amazon River and its main tributary, the Rio Solimoes. In these rivers, the dissolved load is more radiogenic than the suspended sediment, which is likely due to incongruent weathering and related mineral sorting in the Andean headwaters. In contrast, the organic-rich and mineral-poor shield rivers do not show a difference between the truly dissolved, dissolved and suspended load, as the Nd in all these pools is controlled by surface- and solution-complexation and hence isotopically homogenized by continuous exchange and reequilibration. (C) 2017 Elsevier Ltd. All rights reserved
    corecore