248 research outputs found
The GPS Laser Retroreflector Array Project
Systematic co-location in space through the precision orbit determination of GPS satellites via satellite laser ranging will contribute significantly towards improving the accuracy and stability of the international terrestrial reference frame. NASA recently formed the GPS Laser Retroreflector Array Project to develop and deliver retroreflectors for integration on the next generation of GPS satellites. These retroreflectors will be an important contributor to achieving a global accuracy of 1.0 mm and 0.1 mm/year stability in the international terrestrial reference frame. We report here the current status of the GPS Laser Retroreflector Array Project
Tests of gravity Using Lunar Laser Ranging
Lunar laser ranging (LLR) has been a workhorse for testing general relativity over the pa~t four decades. The three retrorefiector arrays put on the Moon by the Apollo astronauts and the French built array on the second Soviet Lunokhod rover continue to be useful targets, and have provided the most stringent tests of the Strong Equivalence Principle and the time variation of Newton's gravitational constant. The relatively new ranging system at the Apache Point :3.5 meter telescope now routinely makes millimeter level range measurements. Incredibly. it has taken 40 years for ground station technology to advance to the point where characteristics of the lunar retrorefiectors are limiting the precision of the range measurements. In this article. we review the gravitational science and technology of lunar laser ranging and discuss prospects for the future
Deconvolving the information from an imperfect spherical gravitational wave antenna
We have studied the effects of imperfections in spherical gravitational wave
antenna on our ability to properly interpret the data it will produce. The
results of a numerical simulation are reported that quantitatively describe the
systematic errors resulting from imperfections in various components of the
antenna. In addition, the results of measurements on a room-temperature
prototype are presented that verify it is possible to accurately deconvolve the
data in practice.Comment: 5 pages, 2 figures, to be published in Europhysics Letter
Hollow Retroreflectors for Lunar Laser Ranging at Goddard Space Flight Center
Laser ranging to the retroreflector arrays placed on the lunar surface by the Apollo astronauts and the Soviet Luna missions have dramatically increased our understanding of gravitational physics along with Earth and Moon geophysics, geodesy, and dynamics. Although the precision of the range measurements has historically been limited by the ground station capabilities, advances in the APOLLO instrument at the Apache Point facility in New Mexico is beginning to be limited by errors associated with the lunar arrays. At Goddard Space Flight Center, we have developed a facility where we can design, build, and test next-generation hollow retroreflectors for Lunar Laser Ranging. Here we will describe this facility as well as report on the bonding techniques used to assemble the retroreflectors. Results from investigations into different high reflectivity mirror coatings, as well as dust mitigation coatings will also be presented
Observing mergers of non-spinning black-hole binaries
Advances in the field of numerical relativity now make it possible to
calculate the final, most powerful merger phase of binary black-hole
coalescence for generic binaries. The state of the art has advanced well beyond
the equal-mass case into the unequal-mass and spinning regions of parameter
space. We present a study of the nonspinning portion of parameter space,
primarily using an analytic waveform model tuned to available numerical data,
with an emphasis on observational implications. We investigate the impact of
varied mass ratio on merger signal-to-noise ratios (SNRs) for several
detectors, and compare our results with expectations from the test-mass limit.
We note a striking similarity of the waveform phasing of the merger waveform
across the available mass ratios. Motivated by this, we calculate the match
between our 1:1 (equal mass) and 4:1 mass-ratio waveforms during the merger as
a function of location on the source sky, using a new formalism for the match
that accounts for higher harmonics. This is an indicator of the amount of
degeneracy in mass ratio for mergers of moderate-mass-ratio systems.Comment: 13 pages, 11 figures, submitted to Phys. Rev.
Partisan sorting is a very recent phenomenon, and has been driven by the Southern realignment.
Past research has argued that over the last 30 years, the United States has become much more geographically polarized. Democrats and Republicans, the argument goes, are moving to different locations, creating a society in which voters are unlikely to know anyone who has an alternative perspective on politics. But how much have Americans really polarized over the last 30 years? In new research which utilizes data on presidential voting by county from 1972-2012, Corey Lang and Shanna Pearson-Merkowitz find that while partisan sorting is on the rise, it is a fairly recent phenomenon, which appears to be mainly driven by the Southern realignment and not housing decisions
Detection strategies for scalar gravitational waves with interferometers and resonant spheres
We compute the response and the angular pattern function of an interferometer
for a scalar component of gravitational radiation in Brans-Dicke theory. We
examine the problem of detecting a stochastic background of scalar GWs and
compute the scalar overlap reduction function in the correlation between an
interferometer and the monopole mode of a resonant sphere. While the
correlation between two interferometers is maximized taking them as close as
possible, the interferometer-sphere correlation is maximized at a finite value
of f*d, where `f' is the resonance frequency of the sphere and `d' the distance
between the detectors. This defines an optimal resonance frequency of the
sphere as a function of the distance. For the correlation between the Virgo
interferometer located near Pisa and a sphere located in Frascati, near Rome,
we find an optimal resonance frequency f=590 Hz. We also briefly discuss the
difficulties in applying this analysis to the dilaton and moduli fields
predicted by string theory.Comment: 26 pages, Latex, 4 Postscript figures. Various minor improvements,
misprint in eqs. 42, 127, 138 corrected, references adde
- …
