461 research outputs found
Effect of Loss on Multiplexed Single-Photon Sources
An on-demand single-photon source is a key requirement for scaling many
optical quantum technologies. A promising approach to realize an on-demand
single-photon source is to multiplex an array of heralded single-photon sources
using an active optical switching network. However, the performance of
multiplexed sources is degraded by photon loss in the optical components and
the non-unit detection efficiency of the heralding detectors. We provide a
theoretical description of a general multiplexed single-photon source with
lossy components and derive expressions for the output probabilities of
single-photon emission and multi-photon contamination. We apply these
expressions to three specific multiplexing source architectures and consider
their tradeoffs in design and performance. To assess the effect of lossy
components on near- and long-term experimental goals, we simulate the
multiplexed sources when used for many-photon state generation under various
amounts of component loss. We find that with a multiplexed source composed of
switches with ~0.2-0.4 dB loss and high efficiency number-resolving detectors,
a single-photon source capable of efficiently producing 20-40 photon states
with low multi-photon contamination is possible, offering the possibility of
unlocking new classes of experiments and technologies.Comment: Journal versio
Resource costs for fault-tolerant linear optical quantum computing
Linear optical quantum computing (LOQC) seems attractively simple:
information is borne entirely by light and processed by components such as beam
splitters, phase shifters and detectors. However this very simplicity leads to
limitations, such as the lack of deterministic entangling operations, which are
compensated for by using substantial hardware overheads. Here we quantify the
resource costs for full scale LOQC by proposing a specific protocol based on
the surface code. With the caveat that our protocol can be further optimised,
we report that the required number of physical components is at least five
orders of magnitude greater than in comparable matter-based systems. Moreover
the resource requirements grow higher if the per-component photon loss rate is
worse than one in a thousand, or the per-component noise rate is worse than
. We identify the performance of switches in the network as the single
most influential factor influencing resource scaling
Relative multiplexing for minimizing switching in linear-optical quantum computing
Many existing schemes for linear-optical quantum computing (LOQC) depend on
multiplexing (MUX), which uses dynamic routing to enable near-deterministic
gates and sources to be constructed using heralded, probabilistic primitives.
MUXing accounts for the overwhelming majority of active switching demands in
current LOQC architectures. In this manuscript, we introduce relative
multiplexing (RMUX), a general-purpose optimization which can dramatically
reduce the active switching requirements for MUX in LOQC, and thereby reduce
hardware complexity and energy consumption, as well as relaxing demands on
performance for various photonic components. We discuss the application of RMUX
to the generation of entangled states from probabilistic single-photon sources,
and argue that an order of magnitude improvement in the rate of generation of
Bell states can be achieved. In addition, we apply RMUX to the proposal for
percolation of a 3D cluster state in [PRL 115, 020502 (2015)], and we find that
RMUX allows a 2.4x increase in loss tolerance for this architecture.Comment: Published version, New Journal of Physics, Volume 19, June 201
Active Temporal Multiplexing of Photons
Photonic qubits constitute a leading platform to disruptive quantum
technologies due to their unique low-noise properties. The cost of the photonic
approach is the non-deterministic nature of many of the processes, including
single-photon generation, which arises from parametric sources and negligible
interaction between photons. Active temporal multiplexing - repeating a
generation process in time and rerouting to single modes using an optical
switching network - is a promising approach to overcome this challenge and will
likely be essential for large-scale applications with greatly reduced resource
complexity and system sizes. Requirements include the precise synchronization
of a system of low-loss switches, delay lines, fast photon detectors, and
feed-forward. Here we demonstrate temporal multiplexing of 8 'bins' from a
double-passed heralded photon source and observe an increase in the heralding
and heralded photon rates. This system points the way to harnessing temporal
multiplexing in quantum technologies, from single-photon sources to large-scale
computation.Comment: Minor revision
Characterizing Perceptions on Factors Associated with Cycling Behavior in the “New Normal”
The COVID-19 pandemic hindered transport systems globally. Its transmission is quick due to the dense living condition in metropolises, and mass transit systems soon became a hotspot for contracting the virus. As a result, individualized forms of transport became favorable. The study investigated other forms of individualized transport that hinders the spread of the virus and deters increasing the patronage for private cars. It also seeks to aid in the development of sustainable transport policies in Metro Manila. Accomplishing this required the perceptions of Metro Manila travelers on bicycling, their socio-demographic characteristics, and trip behavior. The data was gathered through an online survey, which were then analyzed and modeled using the descriptive statistics functions of MS Excel to determine which parameters motivate or demotivate travelers from using a bicycle. Results of the survey led to the conclusion that the cyclist’s security is a significant motivator and demotivator, and unlike its motivator counterpart, cost does not necessarily demotivate travelers from bicycling, but it is also advised to proceed with caution when interpreting the results for the cost motivator since these may also indicate a demotivation for private car use instead of primarily a motivation to use a bicycle for travel. These results were also disaggregated by trip length. It was found that long trip motivators generally held higher significance but this trend is not followed for both short and long trip demotivators which makes it seem that travelers are more easily demotivated to cycle
Rice Galaxy: An open resource for plant science
Background: Rice molecular genetics, breeding, genetic diversity, and allied research (such as rice-pathogen interaction) have adopted sequencing technologies and high-density genotyping platforms for genome variation analysis and gene discovery. Germplasm collections representing rice diversity, improved varieties, and elite breeding materials are accessible through rice gene banks for use in research and breeding, with many having genome sequences and high-density genotype data available. Combining phenotypic and genotypic information on these accessions enables genome-wide association analysis, which is driving quantitative trait loci discovery and molecular marker development. Comparative sequence analyses across quantitative trait loci regions facilitate the discovery of novel alleles. Analyses involving DNA sequences and large genotyping matrices for thousands of samples, however, pose a challenge to non−computer savvy rice researchers. Findings: The Rice Galaxy resource has shared datasets that include high-density genotypes from the 3,000 Rice Genomes project and sequences with corresponding annotations from 9 published rice genomes. The Rice Galaxy web server and deployment installer includes tools for designing single-nucleotide polymorphism assays, analyzing genome-wide association studies, population diversity, rice−bacterial pathogen diagnostics, and a suite of published genomic prediction methods. A prototype Rice Galaxy compliant to Open Access, Open Data, and Findable, Accessible, Interoperable, and Reproducible principles is also presented. Conclusions: Rice Galaxy is a freely available resource that empowers the plant research community to perform state-of-the-art analyses and utilize publicly available big datasets for both fundamental and applied science
Monitoring the growth of a microbubble generated photothermally onto an optical fiber by means Fabry–Perot interferometry
In the present paper, we show the experimental measurement of the growth of a microbubble
created on the tip of a single mode optical fiber, in which zinc nanoparticles were photodeposited on its core by using a single laser source to carry out both the generation of the microbubble by photothermal effect and the monitoring of the microbubble diameter. The photodeposition technique, as well as the formation of the microbubble, was carried out by using a single-mode pigtailed laser diode with emission at a wavelength of 658 nm. The microbubble’s growth was analyzed in the time domain by the analysis of the Fabry–Perot cavity, whose diameter was calculated with the number of interference fringes visualized in an oscilloscope. The results obtained with this technique were compared with images obtained from a CCD camera, in order to verify the diameter of the microbubble. Therefore, by counting the interference fringes, it was possible to quantify the temporal evolution of the microbubble. As a practical demonstration, we proposed a vibrometer sensor using microbubbles with sizes of 83 and 175 m as a Fabry–Perot cavity; through the time period of a full oscillation cycle of an interferogram observed in the oscilloscope, it was possible to know the frequency vibration (500 and 1500 Hz) for a cuvette where the microbubble was created.CONACyT (FOINS) Grant No. 2319Fondo Sectorial de Investigación para la Educación Grant No. A1-S-28440
Blood Epigenome-Wide Association Studies of Suicide Attempt in Adults With Bipolar Disorder
Suicide attempt (SA) risk is elevated in individuals with bipolar disorder (BD), and DNA methylation patterns may serve as possible biomarkers of SA. We conducted epigenome-wide association studies (EWAS) of blood DNA methylation associated with BD and SA. DNA methylation was measured at \u3e700,000 positions in a discovery cohort of n = 84 adults with BD with a history of SA (BD/SA), n = 79 adults with BD without history of SA (BD/non-SA), and n = 76 non-psychiatric controls (CON). EWAS revealed six differentially methylated positions (DMPs) and seven differentially methylated regions (DMRs) between BD/SA and BD/non-SA, with multiple immune-related genes implicated. There were no epigenome-wide significant differences when BD/SA and BD/non-SA were each compared to CON, and patterns suggested that epigenetics differentiating BD/SA from BD/non-SA do not differentiate BD/non-SA from CON. Weighted gene co-methylation network analysis and trait enrichment analysis of the BD/SA vs. BD/non-SA contrast further corroborated immune system involvement, while gene ontology analysis implicated calcium signalling. In an independent replication cohort of n = 48 BD/SA and n = 47 BD/non-SA, fold changes at the discovery cohort\u27s significant sites showed moderate correlation across cohorts and agreement on direction. In both cohorts, classification accuracy for SA history among individuals with BD was highest when methylation at the significant CpG sites as well as information from clinical interviews were combined, with an AUC of 88.8% (CI = 83.8-93.8%) and 82.1% (CI = 73.6-90.5%) for the combined epigenetic-clinical classifier in the discovery and replication cohorts, respectively. Our results provide novel insight to the role of immune system functioning in SA and BD and also suggest that integrating information from multiple levels of analysis holds promise to improve risk assessment for SA in adults with BD
- …