151 research outputs found
Recommended from our members
A survey of 557 GHz water vapor emission in the NGC 1333 molecular cloud
Using NASA\u27s Submillimeter Wave Astronomy Satellite (SWAS), we have examined the production of water in quiescent and shocked molecular gas through a survey of the 556.936 GHz 110-101 transition of ortho-H2O in the NGC 1333 molecular core. These observations reveal broad emission lines associated with the IRAS 2, IRAS 4, IRAS 7, and HH 7-11 outflows. Toward three positions we detect narrow (Δv ~ 2-3 km s-1) emission lines clearly associated with the ambient gas. The SWAS observations, with a resolution of ~4\u27, are supplemented with observations from the Infrared Space Observatory (ISO) and by an unbiased survey of a ~17\u27 × 15\u27 area, with ~50\u27\u27 resolution, in the low-J transitions of CO, 13CO, C18O, N2H+, CH3OH, and SiO. Using these combined data sets, with consistent assumptions, we find beam-averaged ortho-H2O abundances of greater than 10-6 relative to H2 for all four outflows. A comparison of SWAS and ISO water data is consistent with nondissociative shock models, provided the majority of the ortho-H2O (110-101) emission arises from cool postshock material with enhanced abundances. In the ambient gas the ortho-H2O abundance is found to lie between 0.1 × 10-7 and 1 × 10-7 relative to H2 and is enhanced when compared to cold prestellar molecular cores. A comparison of the water emission with tracers of dense condensations and shock chemistry finds no clear correlation. However, the water emission appears to be associated with the presence of luminous external heating sources that power the reflection nebula and the photodissociation region (PDR). Simple PDR models are capable of reproducing the water and high-J 13CO emission, suggesting that a PDR may account for the excitation of water in low-density undepleted gas, as suggested by Spaans & van Dishoeck
Science that "knows" and science that "asks"
Clinician-researchers and experimental scientists do not speak the same language; they have different professional environments and different end-points in their research. This creates considerable problems of comprehension and communication, which constitute a major drawback in multidisciplinary work such as translational medicine. A stereotypic representation of both these worlds is presented as a starting point to encourage debate on this issue
Recommended from our members
Extended [C I] and (CO)-C-13 (5 -\u3e 4) emission in M17SW
We mapped a 13 × 22 pc region in emission from 492 GHz [C I] and, for the first time, 551 GHz 13CO (5 → 4) in the giant molecular cloud M17SW. The morphologies of the [C I] and 13CO emission are strikingly similar. The extent and intensity of the [C I] and 13CO (5 → 4) emission is explained as arising from photodissociation regions on the surfaces of embedded molecular clumps. Modeling of the 13CO (5 → 4) emission in comparison to 13CO (1 → 0) indicates a temperature gradient across the cloud, peaking to at least 63 K near the M17 ionization front and decreasing to at least 20 K at the western edge of the cloud. We see no correlation between gas density and column density. The beam-averaged column density of C I in the core is 1 × 1018 cm-2, and the mean column density ratio N(C I)/N(CO) is about 0.4. The variations of N(C I)/N(CO) with position in M17SW indicate a similar clump size distribution throughout the cloud
Perspective from a Younger Generation -- The Astro-Spectroscopy of Gisbert Winnewisser
Gisbert Winnewisser's astronomical career was practically coextensive with
the whole development of molecular radio astronomy. Here I would like to pick
out a few of his many contributions, which I, personally, find particularly
interesting and put them in the context of newer results.Comment: 14 pages. (Co)authored by members of the MPIfR (Sub)millimeter
Astronomy Group. To appear in the Proceedings of the 4th
Cologne-Bonn-Zermatt-Symposium "The Dense Interstellar Medium in Galaxies"
eds. S. Pfalzner, C. Kramer, C. Straubmeier, & A. Heithausen (Springer:
Berlin
Rapidity and Centrality Dependence of Proton and Anti-proton Production from Au+Au Collisions at sqrt(sNN) = 130GeV
We report on the rapidity and centrality dependence of proton and anti-proton
transverse mass distributions from Au+Au collisions at sqrt(sNN) = 130GeV as
measured by the STAR experiment at RHIC. Our results are from the rapidity and
transverse momentum range of |y|<0.5 and 0.35 <p_t<1.00GeV/c. For both protons
and anti-protons, transverse mass distributions become more convex from
peripheral to central collisions demonstrating characteristics of collective
expansion. The measured rapidity distributions and the mean transverse momenta
versus rapidity are flat within |y|<0.5. Comparisons of our data with results
from model calculations indicate that in order to obtain a consistent picture
of the proton(anti-proton) yields and transverse mass distributions the
possibility of pre-hadronic collective expansion may have to be taken into
account.Comment: 4 pages, 3 figures, 1 table, submitted to PR
A path forward in the debate over health impacts of endocrine disrupting chemicals
Several recent publications reflect debate on the issue of “endocrine disrupting chemicals” (EDCs), indicating that two seemingly mutually exclusive perspectives are being articulated separately and independently. Considering this, a group of scientists with expertise in basic science, medicine and risk assessment reviewed the various aspects of the debate to identify the most significant areas of dispute and to propose a path forward. We identified four areas of debate. The first is about the definitions for terms such as “endocrine disrupting chemical”, “adverse effects”, and “endocrine system”. The second is focused on elements of hormone action including “potency”, “endpoints”, “timing”, “dose” and “thresholds”. The third addresses the information needed to establish sufficient evidence of harm. Finally, the fourth focuses on the need to develop and the characteristics of transparent, systematic methods to review the EDC literature. Herein we identify areas of general consensus and propose resolutions for these four areas that would allow the field to move beyond the current and, in our opinion, ineffective debate
Ageing vision and falls: a review
Background: Falls are the leading cause of accidental injury and death among older adults. One of three adults over the age of 65 years falls annually. As the size of elderly population increases, falls become a major concern for public health and there is a pressing need to understand the causes of falls thoroughly.
Main body of the abstract: While it is well documented that visual functions such as visual acuity, contrast sensitivity, and stereo acuity are correlated with fall risks, little attention has been paid to the relationship between falls and the ability of the visual system to perceive motion in the environment. The omission of visual motion perception in the literature is a critical gap because it is an essential function in maintaining balance. In the present article, we first review existing studies regarding visual risk factors for falls and the effect of ageing vision on falls. We then present a group of phenomena such as vection and sensory reweighting that provide information on how visual motion signals are used to maintain balance.
Conclusion: We suggest that the current list of visual risk factors for falls should be elaborated by taking into account the relationship between visual motion perception and balance control
Human SCARB2-Mediated Entry and Endocytosis of EV71
Enterovirus (EV) 71 infection is known to cause hand-foot-and-mouth disease (HFMD) and in severe cases, induces neurological disorders culminating in fatality. An outbreak of EV71 in South East Asia in 1997 affected over 120,000 people and caused neurological disorders in a few individuals. The control of EV71 infection through public health interventions remains minimal and treatments are only symptomatic. Recently, human scavenger receptor class B, member 2 (SCARB2) has been reported to be a cellular receptor of EV71. We expressed human SCARB2 gene in NIH3T3 cells (3T3-SCARB2) to study the mechanisms of EV71 entry and infection. We demonstrated that human SCARB2 serves as a cellular receptor for EV71 entry. Disruption of expression of SCARB2 using siRNAs can interfere EV71 infection and subsequent inhibit the expression of viral capsid proteins in RD and 3T3-SCARB2 but not Vero cells. SiRNAs specific to clathrin or dynamin or chemical inhibitor of clathrin-mediated endocytosis were all capable of interfering with the entry of EV71 into 3T3-SCARB2 cells. On the other hand, caveolin specific siRNA or inhibitors of caveolae-mediated endocytosis had no effect, confirming that only clathrin-mediated pathway was involved in EV71 infection. Endocytosis of EV71 was also found to be pH-dependent requiring endosomal acidification and also required intact membrane cholesterol. In summary, the mechanism of EV71 entry through SCARB2 as the receptor for attachment, and its cellular entry is through a clathrin-mediated and pH-dependent endocytic pathway. This study on the receptor and endocytic mechanisms of EV71 infection is useful for the development of effective medications and prophylactic treatment against the enterovirus
Disappearance of back-to-back high-p(T) hadron correlations in central Au+Au collisions at root s(NN)=200 GeV
Azimuthal correlations for large transverse momentum charged hadrons have been measured over a wide pseudorapidity range and full azimuth in Au+Au and p+p collisions at roots(NN)=200 GeV. The small-angle correlations observed in p+p collisions and at all centralities of Au+Au collisions are characteristic of hard-scattering processes previously observed in high-energy collisions. A strong back-to-back correlation exists for p+p and peripheral Au+Au. In contrast, the back-to-back correlations are reduced considerably in the most central Au+Au collisions, indicating substantial interaction as the hard-scattered partons or their fragmentation products traverse the medium
Azimuthal anisotropy and correlations in the hard scattering regime at RHIC
Azimuthal anisotropy (v(2)) and two-particle angular correlations of high p(T) charged hadrons have been measured in Au+Au collisions at roots(NN) = 130 GeV for transverse momenta up to 6 GeV/c, where hard processes are expected to contribute significantly. The two-particle angular correlations exhibit elliptic flow and a structure suggestive of fragmentation of high p(T) partons. The monotonic rise of v(2)(p(T)) for p(T) 3 GeV/c, a saturation of v(2) is observed which persists up to p(T) = 6 GeV/c
- …