1,273 research outputs found

    Reproducing the observed Cosmic microwave background anisotropies with causal scaling seeds

    Get PDF
    During the last years it has become clear that global O(N) defects and U(1) cosmic strings do not lead to the pronounced first acoustic peak in the power spectrum of anisotropies of the cosmic microwave background which has recently been observed to high accuracy. Inflationary models cannot easily accommodate the low second peak indicated by the data. Here we construct causal scaling seed models which reproduce the first and second peak. Future, more precise CMB anisotropy and polarization experiments will however be able to distinguish them from the ordinary adiabatic models.Comment: 6 pages 2 figures, revtex; minor corrections and references adde

    CMB anisotropies from pre-big bang cosmology

    Get PDF
    We present an alternative scenario for cosmic structure formation where initial fluctuations are due to Kalb-Ramond axions produced during a pre-big bang phase of inflation. We investigate whether this scenario, where the fluctuations are induced by seeds and therefore are of isocurvature nature, can be brought in agreement with present observations by a suitable choice of cosmological parameters. We also discuss several observational signatures which can distinguish axion seeds from standard inflationary models. We finally discuss the gravitational wave background induced in this model and we show that it may be well within the range of future observations.Comment: 33 pages, 18 figures, corrected some typo

    Cosmic Microwave Background Temperature at Galaxy Clusters

    Get PDF
    We have deduced the cosmic microwave background (CMB) temperature in the Coma cluster (A1656, z=0.0231z=0.0231), and in A2163 (z=0.203z=0.203) from spectral measurements of the Sunyaev-Zel'dovich (SZ) effect over four passbands at radio and microwave frequencies. The resulting temperatures at these redshifts are TComa=2.7890.065+0.080T_{Coma} = 2.789^{+0.080}_{-0.065} K and TA2163=3.3770.102+0.101T_{A2163} = 3.377^{+0.101}_{-0.102} K, respectively. These values confirm the expected relation T(z)=T0(1+z)T(z)=T_{0}(1+z), where T0=2.725±0.002T_{0}= 2.725 \pm 0.002 K is the value measured by the COBE/FIRAS experiment. Alternative scaling relations that are conjectured in non-standard cosmologies can be constrained by the data; for example, if T(z)=T0(1+z)1aT(z) = T_{0}(1+z)^{1-a} or T(z)=T0[1+(1+d)z]T(z)=T_{0}[1+(1+d)z], then a=0.160.32+0.34a=-0.16^{+0.34}_{-0.32} and d=0.17±0.36d = 0.17 \pm 0.36 (at 95% confidence). We briefly discuss future prospects for more precise SZ measurements of T(z)T(z) at higher redshifts.Comment: 13 pages, 1 figure, ApJL accepted for publicatio

    A Multi-Parameter Investigation of Gravitational Slip

    Get PDF
    A detailed analysis of gravitational slip, a new post-general relativity cosmological parameter characterizing the degree of departure of the laws of gravitation from general relativity on cosmological scales, is presented. This phenomenological approach assumes that cosmic acceleration is due to new gravitational effects; the amount of spacetime curvature produced per unit mass is changed in such a way that a universe containing only matter and radiation begins to accelerate as if under the influence of a cosmological constant. Changes in the law of gravitation are further manifest in the behavior of the inhomogeneous gravitational field, as reflected in the cosmic microwave background, weak lensing, and evolution of large-scale structure. The new parameter, ϖ0\varpi_0, is naively expected to be of order unity. However, a multiparameter analysis, allowing for variation of all the standard cosmological parameters, finds that ϖ0=0.090.59+0.74(2σ)\varpi_0 = 0.09^{+0.74}_{-0.59} (2\sigma) where ϖ0=0\varpi_0=0 corresponds to a Λ\LambdaCDM universe under general relativity. Future probes of the cosmic microwave background (Planck) and large-scale structure (Euclid) may improve the limits by a factor of four.Comment: 7 pages, 9 figures, colo

    Towards a future singularity?

    Full text link
    We discuss whether the future extrapolation of the present cosmological state may lead to a singularity even in case of "conventional" (negative) pressure of the dark energy field, namely w=p/ρ1w=p/\rho \geq -1. The discussion is based on an often neglected aspect of scalar-tensor models of gravity: the fact that different test particles may follow the geodesics of different metric frames, and the need for a frame-independent regularization of curvature singularities.Comment: 8 pages. Essay written for the "2004 Awards for Essays on Gravitation" (Gravity Research Foundation, Wellesley Hills, MA, USA), and selected for "Honorable Mention

    Future weak lensing constraints in a dark coupled universe

    Get PDF
    Coupled cosmologies can predict values for the cosmological parameters at low redshifts which may differ substantially from the parameters values within non-interacting cosmologies. Therefore, low redshift probes, as the growth of structure and the dark matter distribution via galaxy and weak lensing surveys constitute a unique tool to constrain interacting dark sector models. We focus here on weak lensing forecasts from future Euclid and LSST-like surveys combined with the ongoing Planck cosmic microwave background experiment. We find that these future data could constrain the dimensionless coupling to be smaller than a few ×102\times 10^{-2}. The coupling parameter ξ\xi is strongly degenerate with the cold dark matter energy density Ωch2\Omega_{c}h^2 and the Hubble constant H0H_0.These degeneracies may cause important biases in the cosmological parameter values if in the universe there exists an interaction among the dark matter and dark energy sectors.Comment: 8 pages, 6 figure

    Determining the Neutrino Mass Hierarchy with Cosmology

    Full text link
    The combination of current large scale structure and cosmic microwave background (CMB) anisotropies data can place strong constraints on the sum of the neutrino masses. Here we show that future cosmic shear experiments, in combination with CMB constraints, can provide the statistical accuracy required to answer questions about differences in the mass of individual neutrino species. Allowing for the possibility that masses are non-degenerate we combine Fisher matrix forecasts for a weak lensing survey like Euclid with those for the forthcoming Planck experiment. Under the assumption that neutrino mass splitting is described by a normal hierarchy we find that the combination Planck and Euclid will possibly reach enough sensitivity to put a constraint on the mass of a single species. Using a Bayesian evidence calculation we find that such future experiments could provide strong evidence for either a normal or an inverted neutrino hierachy. Finally we show that if a particular neutrino hierachy is assumed then this could bias cosmological parameter constraints, for example the dark energy equation of state parameter, by > 1\sigma, and the sum of masses by 2.3\sigma.Comment: 9 pages, 6 figures, 3 table

    The power spectrum of systematics in cosmic shear tomography and the bias on cosmological parameters

    Get PDF
    Cosmic shear tomography has emerged as one of the most promising tools to both investigate the nature of dark energy and discriminate between General Relativity and modified gravity theories. In order to successfully achieve these goals, systematics in shear measurements have to be taken into account; their impact on the weak lensing power spectrum has to be carefully investigated in order to estimate the bias induced on the inferred cosmological parameters. To this end, we develop here an efficient tool to compute the power spectrum of systematics by propagating, in a realistic way, shear measurement, source properties and survey setup uncertainties. Starting from analytical results for unweighted moments and general assumptions on the relation between measured and actual shear, we derive analytical expressions for the multiplicative and additive bias, showing how these terms depend not only on the shape measurement errors, but also on the properties of the source galaxies (namely, size, magnitude and spectral energy distribution). We are then able to compute the amplitude of the systematics power spectrum and its scaling with redshift, while we propose a multigaussian expansion to model in a non-parametric way its angular scale dependence. Our method allows to self-consistently propagate the systematics uncertainties to the finally observed shear power spectrum, thus allowing us to quantify the departures from the actual spectrum. We show that even a modest level of systematics can induce non-negligible deviations, thus leading to a significant bias on the recovered cosmological parameters.Comment: 19 pages, 5 tables, 4 figure

    Future CMB Constraints on Early, Cold, or Stressed Dark Energy

    Get PDF
    We investigate future constraints on early dark energy (EDE) achievable by the Planck and CMBPol experiments, including cosmic microwave background (CMB) lensing. For the dark energy, we include the possibility of clustering through a sound speed c_s^2 <1 (cold dark energy) and anisotropic stresses parameterized with a viscosity parameter c_vis^2. We discuss the degeneracies between cosmological parameters and EDE parameters. In particular we show that the presence of anisotropic stresses in EDE models can substantially undermine the determination of the EDE sound speed parameter c_s^2. The constraints on EDE primordial energy density are however unaffected. We also calculate the future CMB constraints on neutrino masses and find that they are weakened by a factor of 2 when allowing for the presence of EDE, and highly biased if it is incorrectly ignored.Comment: 12 pages, 19 figure
    corecore