2,794 research outputs found

    Collapse of Randomly Linked Polymers

    Full text link
    We consider polymers in which M randomly selected pairs of monomers are restricted to be in contact. Analytical arguments and numerical simulations show that an ideal (Gaussian) chain of N monomers remains expanded as long as M<<N. This result is inconsistent with results obtained from free energy considerations by Brygelson and Thirumalai (PRL76, 542 (1996)).Comment: 1 page, 1 postscript figure, LaTe

    Mechanical properties of calvarial bones in a mouse model for craniosynostosis

    Get PDF
    The mammalian cranial vault largely consists of five flat bones that are joined together along their edges by soft fibrous tissues called sutures. Premature closure of the cranial sutures, craniosynostosis, can lead to serious clinical pathology unless there is surgical intervention. Research into the genetic basis of the disease has led to the development of various animal models that display this condition, e.g. mutant type Fgfr2C342Y/+ mice which display early fusion of the coronal suture (joining the parietal and frontal bones). However, whether the biomechanical properties of the mutant and wild type bones are affected has not been investigated before. Therefore, nanoindentation was used to compare the elastic modulus of cranial bone and sutures in wild type (WT) and Fgfr2C342Y/+mutant type (MT) mice during their postnatal development. Further, the variations in properties with indentation position and plane were assessed. No difference was observed in the elastic modulus of parietal bone between the WT and MT mice at postnatal (P) day 10 and 20. However, the modulus of frontal bone in the MT group was lower than the WT group at both P10 (1.39±0.30 vs. 5.32±0.68 GPa; p&lt;0.05) and P20 (5.57±0.33 vs. 7.14±0.79 GPa; p&lt;0.05). A wide range of values was measured along the coronal sutures for both the WT and MT samples, with no significant difference between the two groups. Findings of this study suggest that the inherent mechanical properties of the frontal bone in the mutant mice were different to the wild type mice from the same genetic background. These differences may reflect variations in the degree of biomechanical adaptation during skull growth, which could have implications for the surgical management of craniosynostosis patients

    Application of Far Cortical Locking Technology in Periprosthetic Femoral Fracture Fixation: A Biomechanical Study

    Get PDF
    © 2016 Elsevier Inc. Background Lack of fracture movement could be a potential cause of periprosthetic femoral fracture (PFF) fixation failures. This study aimed to test whether the use of distal far cortical locking screws reduces the overall stiffness of PFF fixations and allows an increase in fracture movement compared to standard locking screws while retaining the overall strength of the PFF fixations. Methods Twelve laboratory models of Vancouver type B1 PFFs were developed. In all specimens, the proximal screw fixations were similar, whereas in 6 specimens, distal locking screws were used, and in the other six specimens, far cortical locking screws. The overall stiffness, fracture movement, and pattern of strain distribution on the plate were measured in stable and unstable fractures under anatomic 1-legged stance. Specimens with unstable fracture were loaded to failure. Results No statistical difference was found between the stiffness and fracture movement of the two groups in stable fractures. In the unstable fractures, the overall stiffness and fracture movement of the locking group was significantly higher and lower than the far cortical group, respectively. Maximum principal strain on the plate was consistently lower in the far cortical group, and there was no significant difference between the failure loads of the 2 groups. Conclusion The results indicate that far cortical locking screws can reduce the overall effective stiffness of the locking plates and increase the fracture movement while maintaining the overall strength of the PFF fixation construct. However, in unstable fractures, alternative fixation methods, for example, long stem revision might be a better option

    Formation and Stability of Synaptic Receptor Domains

    Get PDF
    Neurotransmitter receptor molecules, concentrated in postsynaptic domains along with scaffold and a number of other molecules, are key regulators of signal transmission across synapses. Employing experiment and theory, we develop a quantitative description of synaptic receptor domains in terms of a reaction-diffusion model. We show that interactions between only receptor and scaffold molecules, together with the rapid diffusion of receptors on the cell membrane, are sufficient for the formation and stable characteristic size of synaptic receptor domains. Our work reconciles long-term stability of synaptic receptor domains with rapid turnover and diffusion of individual receptors.Comment: 5 pages, 3 figures, Supplementary Materia

    The Unusual Universality of Branching Interfaces in Random Media

    Full text link
    We study the criticality of a Potts interface by introducing a {\it froth} model which, unlike its SOS Ising counterpart, incorporates bubbles of different phases. The interface is fractal at the phase transition of a pure system. However, a position space approximation suggests that the probability of loop formation vanishes marginally at a transition dominated by {\it strong random bond disorder}. This implies a linear critical interface, and provides a mechanism for the conjectured equivalence of critical random Potts and Ising models.Comment: REVTEX, 13 pages, 3 Postscript figures appended using uufile
    corecore