CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Application of Far Cortical Locking Technology in Periprosthetic Femoral Fracture Fixation: A Biomechanical Study
Authors
Michael J. Fagan
Andreas Leonidou
+4 more
Arsalan Marghoub
Mehran Moazen
Joseph Pagkalos
Eleftherios Tsiridis
Publication date
17 February 2016
Publisher
'Elsevier BV'
Doi
Cite
Abstract
© 2016 Elsevier Inc. Background Lack of fracture movement could be a potential cause of periprosthetic femoral fracture (PFF) fixation failures. This study aimed to test whether the use of distal far cortical locking screws reduces the overall stiffness of PFF fixations and allows an increase in fracture movement compared to standard locking screws while retaining the overall strength of the PFF fixations. Methods Twelve laboratory models of Vancouver type B1 PFFs were developed. In all specimens, the proximal screw fixations were similar, whereas in 6 specimens, distal locking screws were used, and in the other six specimens, far cortical locking screws. The overall stiffness, fracture movement, and pattern of strain distribution on the plate were measured in stable and unstable fractures under anatomic 1-legged stance. Specimens with unstable fracture were loaded to failure. Results No statistical difference was found between the stiffness and fracture movement of the two groups in stable fractures. In the unstable fractures, the overall stiffness and fracture movement of the locking group was significantly higher and lower than the far cortical group, respectively. Maximum principal strain on the plate was consistently lower in the far cortical group, and there was no significant difference between the failure loads of the 2 groups. Conclusion The results indicate that far cortical locking screws can reduce the overall effective stiffness of the locking plates and increase the fracture movement while maintaining the overall strength of the PFF fixation construct. However, in unstable fractures, alternative fixation methods, for example, long stem revision might be a better option
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
UCL Discovery
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:eprints.ucl.ac.uk.OAI2:147...
Last time updated on 10/03/2017
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1016%2Fj.arth.2016...
Last time updated on 09/01/2021
Supporting member
Repository@Hull - Worktribe
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:hull-repository.worktribe....
Last time updated on 27/02/2018