47 research outputs found

    Reconstructing the Origins and Dispersal of the Polynesian Bottle Gourd (Lagenaria siceraria)

    Get PDF
    The origin of the Polynesian bottle gourd (Lagenaria siceraria), an important crop species in prehistoric Polynesia, has remained elusive. Most recently, a South American origin has been favored as the bottle gourd could have been introduced from this continent with the sweet potato by Polynesian voyagers around A.D. 1,000. To test the hypothesis of an American origin for the Polynesian bottle gourd, we developed seven markers specific to bottle gourd (two chloroplast and five nuclear). The nuclear markers were developed using a new technique where polymorphic inter simple sequence repeat (ISSR) markers are converted into single-locus polymerase chain reaction and sequencing markers—an approach that will be useful for developing markers in other taxa. All seven markers were sequenced in 36 cultivars of bottle gourd from Asia, the Americas, and Polynesia. The results support a dual origin for the Polynesian bottle gourd: the chloroplast markers are exclusively of Asian origin, but the nuclear markers show alleles originating in both the Americas and Asia. Because hybridization of Polynesian bottle gourds with post-European introductions cannot be excluded, ancient DNA from archaeological material will be useful for further elucidating the prehistoric movements of this species in Polynesia. This work has implications not only for the dispersal of the Polynesian bottle gourd but also for the domestication and dispersal of the species as a whole

    Bird evolution: testing the Metaves clade with six new mitochondrial genomes

    Get PDF
    Background Evolutionary biologists are often misled by convergence of morphology and this has been common in the study of bird evolution. However, the use of molecular data sets have their own problems and phylogenies based on short DNA sequences have the potential to mislead us too. The relationships among clades and timing of the evolution of modern birds (Neoaves) has not yet been well resolved. Evidence of convergence of morphology remain controversial. With six new bird mitochondrial genomes (hummingbird, swift, kagu, rail, flamingo and grebe) we test the proposed Metaves/Coronaves division within Neoaves and the parallel radiations in this primary avian clade. Results Our mitochondrial trees did not return the Metaves clade that had been proposed based on one nuclear intron sequence. We suggest that the high number of indels within the seventh intron of the β-fibrinogen gene at this phylogenetic level, which left a dataset with not a single site across the alignment shared by all taxa, resulted in artifacts during analysis. With respect to the overall avian tree, we find the flamingo and grebe are sister taxa and basal to the shorebirds (Charadriiformes). Using a novel site-stripping technique for noise-reduction we found this relationship to be stable. The hummingbird/swift clade is outside the large and very diverse group of raptors, shore and sea birds. Unexpectedly the kagu is not closely related to the rail in our analysis, but because neither the kagu nor the rail have close affinity to any taxa within this dataset of 41 birds, their placement is not yet resolved. Conclusion Our phylogenetic hypothesis based on 41 avian mitochondrial genomes (13,229 bp) rejects monophyly of seven Metaves species and we therefore conclude that the members of Metaves do not share a common evolutionary history within the Neoaves

    Evolutionary relationships and divergence times among the native rats of Australia

    Get PDF
    Background The genus Rattus is highly speciose and has a complex taxonomy that is not fully resolved. As shown previously there are two major groups within the genus, an Asian and an Australo-Papuan group. This study focuses on the Australo-Papuan group and particularly on the Australian rats. There are uncertainties regarding the number of species within the group and the relationships among them. We analysed 16 mitochondrial genomes, including seven novel genomes from six species, to help elucidate the evolutionary history of the Australian rats. We also demonstrate, from a larger dataset, the usefulness of short regions of the mitochondrial genome in identifying these rats at the species level. Results Analyses of 16 mitochondrial genomes representing species sampled from Australo-Papuan and Asian clades of Rattus indicate divergence of these two groups ~2.7 million years ago (Mya). Subsequent diversification of at least 4 lineages within the Australo-Papuan clade was rapid and occurred over the period from ~ 0.9-1.7 Mya, a finding that explains the difficulty in resolving some relationships within this clade. Phylogenetic analyses of our 126 taxon, but shorter sequence (1952 nucleotides long), Rattus database generally give well supported species clades. Conclusions Our whole mitochondrial genome analyses are concordant with a taxonomic division that places the native Australian rats into the Rattus fuscipes species group. We suggest the following order of divergence of the Australian species. R. fuscipes is the oldest lineage among the Australian rats and is not part of a New Guinean radiation. R. lutreolus is also within this Australian clade and shallower than R. tunneyi while the R. sordidus group is the shallowest lineage in the clade. The divergences within the R. sordidus and R. leucopus lineages occurring about half a million years ago support the hypotheses of more recent interchanges of rats between Australia and New Guinea. While problematic for inference of deeper divergences, we report that the analysis of shorter mitochondrial sequences is very useful for species identification in rats

    Comparison of IRES and F2A-Based Locus-Specific Multicistronic Expression in Stable Mouse Lines

    Get PDF
    Efficient and stoichiometric expression of genes concatenated by bi- or multi-cistronic vectors has become an invaluable tool not only in basic biology to track and visualize proteins in vivo, but also for vaccine development and in the clinics for gene therapy. To adequately compare, in vivo, the effectiveness of two of the currently popular co-expression strategies - the internal ribosome entry site (IRES) derived from the picornavirus and the 2A peptide from the foot-and-mouth disease virus (FDMV) (F2A), we analyzed two locus-specific knock-in mouse lines co-expressing SRY-box containing gene 9 (Sox9) and enhanced green fluorescent protein (EGFP) linked by the IRES (Sox9IRES-EGFP) or the F2A (Sox9F2A-EGFP) sequence. Both the constructs expressed Sox9 and EGFP proteins in the appropriate Sox9 expression domains, with the IRES construct expressing reduced levels of EGFP compared to that of the F2A. The latter, on the other hand, produced about 42.2% Sox9-EGFP fusion protein, reflecting an inefficient ribosome ‘skipping’ mechanism. To investigate if the discrepancy in the ‘skipping’ process was locus-dependent, we further analyzed the FLAG3-Bapx1F2A-EGFP mouse line and found similar levels of fusion protein being produced. To assess if EGFP was hindering the ‘skipping’ mechanism, we examined another mouse line co-expressing Bagpipe homeobox gene 1 homolog (Bapx1), Cre recombinase and EGFP (Bapx1F2A-Cre-F2A-EGFP). While the ‘skipping’ was highly efficient between Bapx1 and Cre, the ‘skipping’ between Cre and EGFP was highly inefficient. We have thus demonstrated in our comparison study that the efficient and close to equivalent expression of genes linked by F2A is achievable in stable mouse lines, but the EGFP reporter may cause undesirable inhibition of the ‘skipping’ at the F2A sequence. Hence, the use of other reporter genes should be explored when utilizing F2A peptides

    The mitogenome of Phytophthora agathidicida: Evidence for a not so recent arrival of the "kauri killing" Phytophthora in New Zealand.

    No full text
    Phytophthora agathidicida is associated with a root rot that threatens the long-term survival of the iconic New Zealand kauri. Although it is widely assumed that this pathogen arrived in New Zealand post-1945, this hypothesis has yet to be formally tested. Here we describe evolutionary analyses aimed at evaluating this and two alternative hypotheses. As a basis for our analyses, we assembled complete mitochondrial genome sequences from 16 accessions representing the geographic range of P. agathidicida as well as those of five other members of Phytophthora clade 5. All 21 mitogenome sequences were very similar, differing little in size with all sharing the same gene content and arrangement. We first examined the temporal origins of genetic diversity using a pair of calibration schemes. Both resulted in similar age estimates; specifically, a mean age of 303.0-304.4 years and 95% HPDs of 206.9-414.6 years for the most recent common ancestor of the included isolates. We then used phylogenetic tree building and network analyses to investigate the geographic distribution of the genetic diversity. Four geographically distinct genetic groups were recognised within P. agathidicida. Taken together the inferred age and geographic distribution of the sampled mitogenome diversity suggests that this pathogen diversified following arrival in New Zealand several hundred to several thousand years ago. This conclusion is consistent with the emergence of kauri dieback disease being a consequence of recent changes in the relationship between the pathogen, host, and environment rather than a post-1945 introduction of the causal pathogen into New Zealand

    Resolving the root of the avian mitogenomic tree by breaking up long branches.

    No full text
    International audienceIncomplete taxon sampling has been a major problem in resolving the early divergences in birds. Five new mitochondrial genomes are reported here (brush-turkey, lyrebird, suboscine flycatcher, turkey vulture, and a gull) and three break up long branches that tended to attract the distant reptilian outgroup. These long branches were to galliforms, and to oscine and suboscine passeriformes. Breaking these long branches leaves the root, as inferred by maximum likelihood and Bayesian phylogenetic analyses, between paleognaths and neognaths. This means that morphological, nuclear, and mitochondrial data are now in agreement on the position of the root of the avian tree and we can, move on to other questions. An overview is then given of the deepest divisions in the mitogenomic tree inferred from complete mitochondrial genomes. The strict monophyly of both the galloanseres and the passerines is strongly supported, leaving the deep six-way split within Neoaves as the next major question for which resolution is still lacking. Incomplete taxon sampling was also a problem for Neoaves, and although some resolution is now available there are still problems because current phylogenetic methods still fail to account for real features of DNA sequence evolution

    Data from: The evolutionary root of flowering plants

    No full text
    Correct rooting of the angiosperm radiation is both challenging and necessary for understanding the origins and evolution of physiological and phenotypic traits in flowering plants. The problem is known to be difficult due to the large genetic distance separating flowering plants from other seed plants and the sparse taxon sampling among basal angiosperms. Here we provide further evidence for concern over substitution model misspecification in analyses of chloroplast DNA sequences. We show that support for Amborella as the sole representative of the most basal angiosperm lineage is founded on sequence site patterns poorly described by time reversible substitution models. Improving the fit between sequence data and substitution model identifies Trithuria, Nymphaeales and Amborella as surviving relatives of the most basal lineage of flowering plants. This finding indicates that aquatic and herbaceous species dominate the earliest extant lineage of flowering plants

    Morphological Characterisation of Wild Rubus rosifolius (Rosaceae) Plants Growing in Jamaica Prior to Agricultural Pursuits

    No full text
    Precise identification of plants is critical for informed agriculture where nutraceutical properties and productivity are simultaneously important. The Jamaican-grown West Indian raspberry (Rubus rosifolius) falls into this category. The first step to taking this wild-growing plant into agricultural production is morphological identification. Although there are no botanical reports of multiple varieties of this species in Jamaica, two morphotypes were found, which were named ‘Red' and ‘Wine Red’ based on fruit colour. Morphological methods were used to characterise these plants growing at Holywell (located over 900 m above sea level), in the Blue Mountain region of Jamaica. Morphological analyses revealed that growth form, leaf, flower, and fruit characteristics of the morphotypes were statistically distinctive between the two morphotypes for 48 of the 59 measured parameters. Several descriptors allowed the morphotypes to be distinguished before their fruits became visible. These findings support the hypothesis that there is a standard morphotype having a scrambling morphology, smaller leaves, and darker red, oblong, solitary fruits (Wine Red, WR), and a distinct morphotype with more upright stems, larger leaves, and lighter red, spherical, bunched fruits (Red, R). This information can now be used to facilitate molecular analyses and ramp-up clonal production of these morphotypes to determine the agricultural factors that are linked to yield and nutritionally relevant traits

    Data from: Identification of chloroplast genome loci suitable for high-resolution phylogeographic studies of Colocasia esculenta (L.) Schott (Araceae) and closely related taxa

    No full text
    Recently, we reported the chloroplast genome-wide association of oligonucleotide repeats, indels and nucleotide substitutions in aroid chloroplast genomes. We hypothesized that the distribution of oligonucleotide repeat sequences in a single representative genome can be used to identify mutational hotspots and loci suitable for population genetic, phylogenetic and phylogeographic studies. Using information on the location of oligonucleotide repeats in the chloroplast genome of taro (Colocasia esculenta), we designed 30 primer pairs to amplify and sequence polymorphic loci. The primers have been tested in a range of intra-specific to intergeneric comparisons, including ten taro samples (Colocasia esculenta) from diverse geographical locations, four other Colocasia species (C. affinis, C. fallax, C. formosana, C. gigantea) and three other aroid genera (represented by Remusatia vivipara, Alocasia brisbanensis and Amorphophallus konjac). Multiple sequence alignments for the intra-specific comparison revealed nucleotide substitutions (point mutations) at all 30 loci and microsatellite polymorphisms at 14 loci. The primer pairs reported here reveal levels of genetic variation suitable for high-resolution phylogeographic and evolutionary studies of taro and other closely related aroids. Our results confirm that information on repeat distribution can be used to identify loci suitable for such studies, and we expect that this approach can be used in other plant groups
    corecore