5,962 research outputs found

    Finite Temperature and Dynamical Properties of the Random Transverse-Field Ising Spin Chain

    Full text link
    We study numerically the paramagnetic phase of the spin-1/2 random transverse-field Ising chain, using a mapping to non-interacting fermions. We extend our earlier work, Phys. Rev. 53, 8486 (1996), to finite temperatures and to dynamical properties. Our results are consistent with the idea that there are ``Griffiths-McCoy'' singularities in the paramagnetic phase described by a continuously varying exponent z(δ)z(\delta), where δ\delta measures the deviation from criticality. There are some discrepancies between the values of z(δ)z(\delta) obtained from different quantities, but this may be due to corrections to scaling. The average on-site time dependent correlation function decays with a power law in the paramagnetic phase, namely τ1/z(δ)\tau^{-1/z(\delta)}, where τ\tau is imaginary time. However, the typical value decays with a stretched exponential behavior, exp(cτ1/μ)\exp(-c\tau^{1/\mu}), where μ\mu may be related to z(δ)z(\delta). We also obtain results for the full probability distribution of time dependent correlation functions at different points in the paramagnetic phase.Comment: 10 pages, 14 postscript files included. The discussion of the typical time dependent correlation function has been greatly expanded. Other papers of APY are available on-line at http://schubert.ucsc.edu/pete

    Hard hexagon partition function for complex fugacity

    Full text link
    We study the analyticity of the partition function of the hard hexagon model in the complex fugacity plane by computing zeros and transfer matrix eigenvalues for large finite size systems. We find that the partition function per site computed by Baxter in the thermodynamic limit for positive real values of the fugacity is not sufficient to describe the analyticity in the full complex fugacity plane. We also obtain a new algebraic equation for the low density partition function per site.Comment: 49 pages, IoP styles files, lots of figures (png mostly) so using PDFLaTeX. Some minor changes added to version 2 in response to referee report

    Integrability vs non-integrability: Hard hexagons and hard squares compared

    Full text link
    In this paper we compare the integrable hard hexagon model with the non-integrable hard squares model by means of partition function roots and transfer matrix eigenvalues. We consider partition functions for toroidal, cylindrical, and free-free boundary conditions up to sizes 40×4040\times40 and transfer matrices up to 30 sites. For all boundary conditions the hard squares roots are seen to lie in a bounded area of the complex fugacity plane along with the universal hard core line segment on the negative real fugacity axis. The density of roots on this line segment matches the derivative of the phase difference between the eigenvalues of largest (and equal) moduli and exhibits much greater structure than the corresponding density of hard hexagons. We also study the special point z=1z=-1 of hard squares where all eigenvalues have unit modulus, and we give several conjectures for the value at z=1z=-1 of the partition functions.Comment: 46 page

    Design of the software development and verification system (SWDVS) for shuttle NASA study task 35

    Get PDF
    An overview of the Software Development and Verification System (SWDVS) for the space shuttle is presented. The design considerations, goals, assumptions, and major features of the design are examined. A scenario that shows three persons involved in flight software development using the SWDVS in response to a program change request is developed. The SWDVS is described from the standpoint of different groups of people with different responsibilities in the shuttle program to show the functional requirements that influenced the SWDVS design. The software elements of the SWDVS that satisfy the requirements of the different groups are identified

    High-precision estimate of g4 in the 2D Ising model

    Full text link
    We compute the renormalized four-point coupling in the 2d Ising model using transfer-matrix techniques. We greatly reduce the systematic uncertainties which usually affect this type of calculations by using the exact knowledge of several terms in the scaling function of the free energy. Our final result is g4=14.69735(3).Comment: 17 pages, revised version with minor changes, accepted for publication in Journal of Physics

    Randomly incomplete spectra and intermediate statistics

    Full text link
    By randomly removing a fraction of levels from a given spectrum a model is constructed that describes a crossover from this spectrum to a Poisson spectrum. The formalism is applied to the transitions towards Poisson from random matrix theory (RMT) spectra and picket fence spectra. It is shown that the Fredholm determinant formalism of RMT extends naturally to describe incomplete RMT spectra.Comment: 9 pages, 2 figures. To appear in Physical Review

    Painleve versus Fuchs

    Full text link
    The sigma form of the Painlev{\'e} VI equation contains four arbitrary parameters and generically the solutions can be said to be genuinely ``nonlinear'' because they do not satisfy linear differential equations of finite order. However, when there are certain restrictions on the four parameters there exist one parameter families of solutions which do satisfy (Fuchsian) differential equations of finite order. We here study this phenomena of Fuchsian solutions to the Painlev{\'e} equation with a focus on the particular PVI equation which is satisfied by the diagonal correlation function C(N,N) of the Ising model. We obtain Fuchsian equations of order N+1N+1 for C(N,N) and show that the equation for C(N,N) is equivalent to the NthN^{th} symmetric power of the equation for the elliptic integral EE. We show that these Fuchsian equations correspond to rational algebraic curves with an additional Riccati structure and we show that the Malmquist Hamiltonian p,qp,q variables are rational functions in complete elliptic integrals. Fuchsian equations for off diagonal correlations C(N,M)C(N,M) are given which extend our considerations to discrete generalizations of Painlev{\'e}.Comment: 18 pages, Dedicated to the centenary of the publication of the Painleve VI equation in the Comptes Rendus de l'Academie des Sciences de Paris by Richard Fuchs in 190

    Steady States of a Nonequilibrium Lattice Gas

    Full text link
    We present a Monte Carlo study of a lattice gas driven out of equilibrium by a local hopping bias. Sites can be empty or occupied by one of two types of particles, which are distinguished by their response to the hopping bias. All particles interact via excluded volume and a nearest-neighbor attractive force. The main result is a phase diagram with three phases: a homogeneous phase, and two distinct ordered phases. Continuous boundaries separate the homogeneous phase from the ordered phases, and a first-order line separates the two ordered phases. The three lines merge in a nonequilibrium bicritical point.Comment: 14 pages, 24 figure

    The importance of the Ising model

    Full text link
    Understanding the relationship which integrable (solvable) models, all of which possess very special symmetry properties, have with the generic non-integrable models that are used to describe real experiments, which do not have the symmetry properties, is one of the most fundamental open questions in both statistical mechanics and quantum field theory. The importance of the two-dimensional Ising model in a magnetic field is that it is the simplest system where this relationship may be concretely studied. We here review the advances made in this study, and concentrate on the magnetic susceptibility which has revealed an unexpected natural boundary phenomenon. When this is combined with the Fermionic representations of conformal characters, it is suggested that the scaling theory, which smoothly connects the lattice with the correlation length scale, may be incomplete for H0H \neq 0.Comment: 33 page
    corecore