In this paper we compare the integrable hard hexagon model with the
non-integrable hard squares model by means of partition function roots and
transfer matrix eigenvalues. We consider partition functions for toroidal,
cylindrical, and free-free boundary conditions up to sizes 40×40 and
transfer matrices up to 30 sites. For all boundary conditions the hard squares
roots are seen to lie in a bounded area of the complex fugacity plane along
with the universal hard core line segment on the negative real fugacity axis.
The density of roots on this line segment matches the derivative of the phase
difference between the eigenvalues of largest (and equal) moduli and exhibits
much greater structure than the corresponding density of hard hexagons. We also
study the special point z=−1 of hard squares where all eigenvalues have unit
modulus, and we give several conjectures for the value at z=−1 of the
partition functions.Comment: 46 page