130 research outputs found

    Determinants and consequences of the pharmacokinetics of rifampicin, isoniazid, pyrazinamide and ethambutol in a cohort of tuberculosis patients

    Get PDF
    Includes bibliographical references (leaves 190-203).A prospectlve pharmacokinetic study was conducted amongst a cohort of 142 patients with tuberculosis (TB) susceptible to rifampicin and isoniazid at Brewelsleloof Hospital, Worcester, in the Western Cape

    Determination of kanamycin plasma levels using LC-MS and its pharmacokinetics in patients with multidrug-resistant tuberculosis with and without HIV-infection

    Get PDF
    The objectives of the study were: (1) to determine kanamycin plasma concentrations using liquid chromatography coupled with mass spectrometry (LC-MS), (2) to investigate kanamycin pharmacokinetics (PK) in patients with multi-drug resistant tuberculosis (MDR-TB), (3) to find out whether HIV infection, kidney dysfunction and antiretroviral drugs influence kanamycin PK. The study was designed as a non-randomized study involving male and female HIV- positive and HIVnegative patients admitted for MDR-TB treatment. Blood samples were collected before (baseline) and ½, 1, 2, 4, 8 and 24 hours after intramuscular injection of kanamycin. LC-MS was used to quantify kanamycin plasma concentrations. Thirty one patients including 13 HIV (+) participated in the study. The lower limit of detection and lower limit of quantification of kanamycin were 0.06 μg/ml and 0.15 μg/ml respectively. Kanamycin PK parameters were described and there was no significant difference between HIV-positive and HIV-negative patients. A statistical significant difference (p=0.0126) was found in the renal function in HIV - positive and HIV - negative patients. However, this difference did not affect kanamycin elimination. No interactions have been identified between antiretroviral drugs and kanamycin. Conclusion: LC-MS analysis method is highly specific and highly sensitive in the detection and quantification of kanamycin plasma concentrations. Kanamycin PK in patients with MDR-TB was described. Due to a limited number of patients, we cannot rule out any influence of HIV - infection, renal impairment and antiretroviral drugs on kanamycin pharmacokinetics. The relationship between the area under the curve of kanamycin free plasma concentrations (fAUC) and its minimum inhibitory concentrations (MIC) on M.tuberculosis isolated from the sputum of each patient should be assessed. Therefore, kanamycin free plasma concentrations and MIC should be determined.Web of Scienc

    N-Acetyltransferase 2 Genotypes among Zulu-Speaking South Africans and Isoniazid and N-Acetyl-Isoniazid Pharmacokinetics during Antituberculosis Treatment.

    Get PDF
    The distribution of N-acetyltransferase 2 gene (NAT2) polymorphisms varies considerably among different ethnic groups. Information on NAT2 single-nucleotide polymorphisms in the South African population is limited. We investigated NAT2 polymorphisms and their effect on isoniazid pharmacokinetics (PK) in Zulu black HIV-infected South Africans in Durban, South Africa. HIV-infected participants with culture-confirmed pulmonary tuberculosis (TB) were enrolled from two unrelated studies. Participants with culture-confirmed pulmonary TB were genotyped for the NAT2 polymorphisms 282C>T, 341T>C, 481C>T, 857G>A, 590G>A, and 803A>G using Life Technologies prevalidated TaqMan assays (Life Technologies, Paisley, UK). Participants underwent sampling for determination of plasma isoniazid and N-acetyl-isoniazid concentrations. Among the 120 patients, 63/120 (52.5%) were slow metabolizers (NAT2*5/*5), 43/120 (35.8%) had an intermediate metabolism genotype (NAT2*5/12), and 12/120 (11.7%) had a rapid metabolism genotype (NAT2*4/*11, NAT2*11/12, and NAT2*12/12). The NAT2 alleles evaluated in this study were *4, *5C, *5D, *5E, *5J, *5K, *5KA, *5T, *11A, *12A/12C, and *12M. NAT2*5 was the most frequent allele (70.4%), followed by NAT2*12 (27.9%). Fifty-eight of 60 participants in study 1 had PK results. The median area under the concentration-time curve from 0 to infinity (AUC0-∞) was 5.53 (interquartile range [IQR], 3.63 to 9.12 μg h/ml), and the maximum concentration (Cmax) was 1.47 μg/ml (IQR, 1.14 to 1.89 μg/ml). Thirty-four of 40 participants in study 2 had both PK results and NAT2 genotyping results. The median AUC0-∞ was 10.76 μg·h/ml (IQR, 8.24 to 28.96 μg·h/ml), and the Cmax was 3.14 μg/ml (IQR, 2.39 to 4.34 μg/ml). Individual polymorphisms were not equally distributed, with some being represented in small numbers. The genotype did not correlate with the phenotype, with those with a rapid acetylator genotype showing higher AUC0-∞ values than those with a slow acetylator genotype, but the difference was not significant (P = 0.43). There was a high prevalence of slow acetylator genotypes, followed by intermediate and then rapid acetylator genotypes. The poor concordance between genotype and phenotype suggests that other factors or genetic loci influence isoniazid metabolism, and these warrant further investigation in this population

    Effects on the QT Interval of a Gatifloxacin-Containing Regimen versus Standard Treatment of Pulmonary Tuberculosis.

    Get PDF
    The effects on ventricular repolarization-recorded on the electrocardiogram (ECG) as lengthening of the QT interval-of acute tuberculosis and those of standard and alternative antituberculosis regimens are underdocumented. A correction factor (QTc) is introduced to make the QT independent of the heart rate, translating into the slope of the regression line between QT and heart rate being close to zero. ECGs were performed predosing and 1 to 5 h postdosing (month 1, month 2, and end of treatment) around drugs' peak concentration time in tuberculosis patients treated with either the standard 6-month treatment (rifampin and isoniazid for 6 months and pyrazinamide and ethambutol for 2 months; "control") or a test regimen with gatifloxacin, rifampin, and isoniazid given for 4 months (pyrazinamide for the first 2 months) as part of the OFLOTUB study, a randomized controlled trial conducted in five African countries. Drug levels were measured at steady state (month 1) in a subset of patients. We compared treatment effects on the QTc and modeled the effect of individual drugs' maximum concentrations of drug in serum (Cmax) on the Fridericia-corrected QT interval. A total of 1,686 patients were eligible for the correction factor analysis of QT at baseline (mean age, 30.7 years; 27% female). Median heart rate decreased from 96/min at baseline to 71/min at end of treatment, and body temperature decreased from 37.2 to 36.5°C. Pretreatment, the nonlinear model estimated the best correction factor at 0.4081 in between Bazett's (0.5) and Fridericia's (0.33) corrections. On treatment, Fridericia (QTcF) was the best correction factor. A total of 1,602 patients contributed to the analysis of QTcF by treatment arm. The peak QTcF value during follow-up was >480 ms for 21 patients (7 and 14 in the test and control arms, respectively) and >500 ms for 9 patients (5 and 4, respectively), corresponding to a risk difference of -0.9% (95% confidence interval [CI], -2.0% to 2.3%; P = 0.12) and 0.1% (95% CI, -0.6% to 0.9%; P = 0.75), respectively, between the test and control arms. One hundred six (6.6%) patients had a peak measurement change from baseline of >60 ms (adjusted between-arm difference, 0.8%; 95% CI, -1.4% to 3.1%; P = 0.47). No evidence was found of an association between Cmax of the antituberculosis drugs 1 month into treatment and the length of QTcF. Neither a standard 6-month nor a 4-month gatifloxacin-based regimen appears to carry a sizable risk of QT prolongation in patients with newly diagnosed pulmonary tuberculosis. This is to date the largest data set studying the effects of antituberculosis regimens on the QT, both for the standard regimen and for a fluoroquinolone-containing regimen. (This study has been registered at ClinicalTrials.gov under identifier NCT00216385.)

    Lack of association between stavudine exposure and lipoatrophy, dysglycaemia, hyperlactataemia and hypertriglyceridaemia: a prospective cross sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stavudine continues to be widely used in resource poor settings despite its toxicity. Our objective was to determine association between plasma stavudine concentrations and lipoatrophy, concentrations of glucose, lactate and triglycerides.</p> <p>Methods</p> <p>Participants were enrolled in a cross-sectional study with lipoatrophy assessment, oral glucose tolerance test, fasting triglycerides, finger prick lactate, and stavudine concentrations. Individual predictions of the area under the concentration curve (AUC) were obtained using a population pharmacokinetic approach. Logistic regression models were fitted to assess the association between stavudine geometric mean ratio > 1 and impaired fasting glucose, impaired glucose tolerance, hyperlactataemia, hypertriglyceridaemia, and lipoatrophy.</p> <p>Results</p> <p>There were 47 study participants with a median age of 34 years and 83% were women. The median body mass index and waist:hip ratio was 24.5 kg/m<sup>2 </sup>and 0.85 respectively. The median duration on stavudine treatment was 14.5 months. The prevalence of lipoatrophy, impaired fasting glucose, impaired glucose tolerance, hyperlactataemia, and hypertriglyceridaemia were 34%, 19%, 4%, 32%, and 23% respectively. Estimated median (interquartile range) stavudine AUC was 2191 (1957 to 2712) ng*h/mL. Twenty two participants had stavudine geometric mean ratio >1. Univariate logistic regression analysis showed no association between stavudine geometric mean ratio >1 and impaired fasting glucose (odds ratio (OR) 2.00, 95% CI 0.44 to 9.19), impaired glucose tolerance (OR 1.14, 95% CI 0.07 to 19.42), hyperlactataemia (OR 2.19, 95%CI 0.63 to 7.66), hypertriglyceridaemia (OR 1.75, 95%CI 0.44 to 7.04), and lipoatrophy (OR 0.83, 95% CI 0.25 to 2.79).</p> <p>Conclusions</p> <p>There was a high prevalence of metabolic complications of stavudine, but these were not associated with plasma stavudine concentrations. Until there is universal access to safer antiretroviral drugs, there is a need for further studies examining the pathogenesis of stavudine-associated toxicities.</p

    Early antituberculosis drug exposure in hospitalized patients with human immunodeficiency virus-associated tuberculosis

    Get PDF
    Aims: Patients hospitalized at the time of human immunodeficiency virus-associated tuberculosis (HIV-TB) diagnosis have high early mortality. We hypothesized that compared to outpatients, there would be lower anti-TB drug exposure in hospitalized HIV-TB patients, and amongst hospitalized patients exposure would be lower in patients who die or have high lactate (a sepsis marker). Methods: We performed pharmacokinetic sampling in hospitalized HIV-TB patients and outpatients. Plasma rifampicin, isoniazid and pyrazinamide concentrations were measured in samples collected predose and at 1, 2.5, 4, 6 and 8 hours on the third day of standard anti-TB therapy. Twelve-week mortality was ascertained for inpatients. Noncompartmental pharmacokinetic analysis was performed. Results: Pharmacokinetic data were collected in 59 hospitalized HIV-TB patients and 48 outpatients. Inpatient 12-week mortality was 11/59 (19%). Rifampicin, isoniazid and pyrazinamide exposure was similar between hospitalized and outpatients (maximum concentration [Cmax]: 7.4 vs 8.3 μg mL–1, P =.223; 3.6 vs 3.5 μg mL–1, P =.569; 50.1 vs 46.8 μg mL–1, P =.081; area under the concentration–time curve from 0 to 8 hours: 41.0 vs 43.8 mg h L–1, P = 0.290; 13.5 vs 12.4 mg h L–1, P =.630; 316.5 vs 292.2 mg h L–1, P =.164, respectively) and not lower in inpatients who died. Rifampicin and isoniazid Cmax were below recommended ranges in 61% and 39% of inpatients and 44% and 35% of outpatients. Rifampicin exposure was higher in patients with lactate >2.2 mmol L–1. Conclusion: Mortality in hospitalized HIV-TB patients was high. Early anti-TB drug exposure was similar to outpatients and not lower in inpatients who died. Rifampicin and isoniazid Cmax were suboptimal in 61% and 39% of inpatients and rifampicin exposure was higher in patients with high lactate. Treatment strategies need to be optimized to improve survival

    Association of lopinavir concentrations with plasma lipid or glucose concentrations in HIV-infected South Africans: a cross sectional study

    Get PDF
    Abstract Background Dyslipidaemia and dysglycaemia have been associated with exposure to ritonavir-boosted protease inhibitors. Lopinavir/ritonavir, the most commonly used protease inhibitor in resource-limited settings, often causes dyslipidaemia. There are contradictory data regarding the association between lopinavir concentrations and changes in lipids. Aim To investigate associations between plasma lopinavir concentrations and lipid and glucose concentrations in HIV-infected South African adults. Methods Participants stable on lopinavir-based antiretroviral therapy were enrolled into a cross-sectional study. After an overnight fast, total cholesterol, triglycerides, and lopinavir concentrations were measured and an oral glucose tolerance test was performed. Regression analyses were used to determine associations between plasma lopinavir concentrations and fasting and 2 hour plasma glucose, fasting cholesterol, and triglycerides concentrations. Results There were 84 participants (72 women) with a median age of 36 years. The median blood pressure, body mass index and waist: hip ratio were 108/72 mmHg, 26 kg/m2 and 0.89 respectively. The median CD4 count was 478 cells/mm3. Median duration on lopinavir was 18.5 months. The median (interquartile range) lopinavir concentration was 8.0 (5.2 to 12.8) μg/mL. Regression analyses showed no significant association between lopinavir pre-dose concentrations and fasting cholesterol (β-coefficient −0.04 (95% CI −0.07 to 0.00)), triglycerides (β-coefficient −0.01 (95% CI −0.04 to 0.02)), fasting glucose (β-coefficient −0.01 (95% CI −0.04 to 0.02)), or 2-hour glucose concentrations (β-coefficient −0.02 (95% CI −0.09 to 0.06)). Lopinavir concentrations above the median were not associated with presence of dyslipidaemia or dysglycaemia. Conclusions There was no association between lopinavir plasma concentrations and plasma lipid and glucose concentrations

    Integrating pharmacokinetics and pharmacodynamics in operational research to end tuberculosis

    Get PDF
    Tuberculosis (TB) elimination requires innovative approaches. The new Global Tuberculosis Network (GTN) aims to conduct research on key unmet therapeutic and diagnostic needs in the field of TB elimination using multidisciplinary, multisectorial approaches. The TB Pharmacology section within the new GTN aims to detect and study the current knowledge gaps, test potential solutions using human pharmacokinetics informed through preclinical infection systems, and return those findings to the bedside. Moreover, this approach would allow prospective identification and validation of optimal shorter therapeutic durations with new regimens. Optimized treatment using available and repurposed drugs may have an increased impact when prioritizing a personcentered approach and acknowledge the importance of age, gender, comorbidities, and both social and programmatic environments. In this viewpoint article, we present an in-depth discussion on how TB pharmacology and the related strategies will contribute to TB elimination

    Rifapentine Population Pharmacokinetics and Dosing Recommendations for Latent Tuberculosis Infection.

    Get PDF
    RATIONALE: Rifapentine has been investigated at various doses, frequencies, and dosing algorithms but clarity on the optimal dosing approach is lacking. OBJECTIVES: In this individual participant data meta-analysis of rifapentine pharmacokinetics, we characterize rifapentine population pharmacokinetics, including autoinduction, and determine optimal dosing strategies for short-course rifapentine-based regimens for latent tuberculosis infection. METHODS: Rifapentine pharmacokinetic studies were identified though a systematic review of literature. Individual plasma concentrations were pooled, and non-linear mixed effects modeling was performed. A subset of data was reserved for external validation. Simulations were performed under various dosing conditions including current weight-based methods and alternative methods driven by identified covariates. MEASUREMENTS AND MAIN RESULTS: We identified 9 clinical studies with a total of 863 participants with pharmacokinetic data (n=4301 plasma samples). Rifapentine population pharmacokinetics were described successfully with a one-compartment distribution model. Autoinduction of clearance was driven by rifapentine plasma concentration. The maximum effect was a 72% increase in clearance and was reached after 21 days. Drug bioavailability decreased by 27% with HIV infection, decreased by 28% with fasting, and increased by 49% with a high-fat meal. Body weight was not a clinically relevant predictor of clearance. Pharmacokinetic simulations showed that current weight-based dosing leads to lower exposures in low weight individuals, which can be overcome with flat dosing. In HIV-positive patients, 30% higher doses are required to match drug exposure in HIV-negative patients. CONCLUSIONS: Weight-based dosing of rifapentine should be removed from clinical guidelines and higher doses for HIV-positive patients should be considered to provide equivalent efficacy
    corecore