9,115 research outputs found

    Estimating spillovers using imprecisely measured networks

    Full text link
    In many experimental contexts, whether and how network interactions impact the outcome of interest for both treated and untreated individuals are key concerns. Networks data is often assumed to perfectly represent these possible interactions. This paper considers the problem of estimating treatment effects when measured connections are, instead, a noisy representation of the true spillover pathways. We show that existing methods, using the potential outcomes framework, yield biased estimators in the presence of this mismeasurement. We develop a new method, using a class of mixture models, that can account for missing connections and discuss its estimation via the Expectation-Maximization algorithm. We check our method's performance by simulating experiments on real network data from 43 villages in India. Finally, we use data from a previously published study to show that estimates using our method are more robust to the choice of network measure

    Failure to retreat: Blunted sensitivity to negative feedback supports risky behavior in adolescents

    Get PDF
    Decision-making processes rarely occur in isolation. Rather, representations are updated constantly based on feedback to past decisions and actions. However, previous research has focused on the reaction to feedback receipt itself, instead of examining how feedback information is integrated into future decisions. In the current study, we examined differential neural sensitivity during risk decisions following positive versus negative feedback in a risk-taking context, and how this differential sensitivity is linked to adolescent risk behavior. Fifty-eight adolescents (ages 13–17 years) completed the Balloon Analogue Risk Task (BART) during an fMRI session and reported on their levels of risk-taking behavior. Results show that reduced medial PFC (mPFC) response following negative versus positive feedback is associated with fewer reductions in task-based risky decisions following negative feedback, as well as increased self-reported risk-taking behavior. These results suggest that reduced neural integration of negative feedback into during future decisions supports risky behavior, perhaps by discounting negative relative to positive feedback information when making subsequent risky decisions

    Adaptive Adolescent Flexibility: Neurodevelopment of Decision-making and Learning in a Risky Context

    Get PDF
    Research on adolescence has largely focused on the particular biological and neural changes that place teens at risk for negative outcomes linked to increases in sensation-seeking and risky behavior. However, there is a growing interest in the adaptive function of adolescence, with work highlighting the dual nature of adolescence as a period of potential risk and opportunity. We examined how behavioral and neural sensitivity to risk and reward varies as a function of age using the Balloon Analog Risk Task. Seventy-seven children and adolescents (ages 8–17 years) completed the Balloon Analog Risk Task during an fMRI session. Results indicate that adolescents show greater learning throughout the task. Furthermore, older participants showed increased neural responses to reward in the OFC and ventral striatum, increased activation to risk in the mid-cingulate cortex, as well as increased functional OFC–medial PFC coupling in both risk and reward contexts. Age-related changes in regional activity and interregional connectivity explain the link between age and increases in flexible learning. These results support the idea that adolescents’ sensitivity to risk and reward supports adaptive learning and behavioral approaches for reward acquisition

    An investigation into the effects of solvent content on the image quality and stability of ink jet digital prints under varied storage conditions

    Full text link
    Increasing numbers of galleries, museums and archives are including ink jet printed materials into their collections, and therefore displays. There is evidence that the instability of these prints is such that images can suffer deterioration in print quality or in extreme cases, a loss of information over an extended period of time. This is shorter than the period typically required for perceptible deterioration to occur in many other paper-based artworks. The image stability of prints is affected by a number of factors some of which have already been studied. However the role played by the ink solvent in the loss of image quality has yet to be explored. This paper will outline research being undertaken to investigate the effects of solvent content which may increase/promote the loss in image quality of the hard copy prints when stored or displayed under a range of temperature and humidity conditions

    Stability of Filters for the Navier-Stokes Equation

    Get PDF
    Data assimilation methodologies are designed to incorporate noisy observations of a physical system into an underlying model in order to infer the properties of the state of the system. Filters refer to a class of data assimilation algorithms designed to update the estimation of the state in a on-line fashion, as data is acquired sequentially. For linear problems subject to Gaussian noise filtering can be performed exactly using the Kalman filter. For nonlinear systems it can be approximated in a systematic way by particle filters. However in high dimensions these particle filtering methods can break down. Hence, for the large nonlinear systems arising in applications such as weather forecasting, various ad hoc filters are used, mostly based on making Gaussian approximations. The purpose of this work is to study the properties of these ad hoc filters, working in the context of the 2D incompressible Navier-Stokes equation. By working in this infinite dimensional setting we provide an analysis which is useful for understanding high dimensional filtering, and is robust to mesh-refinement. We describe theoretical results showing that, in the small observational noise limit, the filters can be tuned to accurately track the signal itself (filter stability), provided the system is observed in a sufficiently large low dimensional space; roughly speaking this space should be large enough to contain the unstable modes of the linearized dynamics. Numerical results are given which illustrate the theory. In a simplified scenario we also derive, and study numerically, a stochastic PDE which determines filter stability in the limit of frequent observations, subject to large observational noise. The positive results herein concerning filter stability complement recent numerical studies which demonstrate that the ad hoc filters perform poorly in reproducing statistical variation about the true signal

    Salmonella Pathogenesis and Processing of Secreted Effectors by Caspase-3

    Get PDF
    The enteric pathogen Salmonella enterica serovar Typhimurium causes food poisoning resulting in gastroenteritis. The S. Typhimurium effector Salmonella invasion protein A (SipA) promotes gastroenteritis by functional motifs that trigger either mechanisms of inflammation or bacterial entry. During infection of intestinal epithelial cells, SipA was found to be responsible for the early activation of caspase-3, an enzyme that is required for SipA cleavage at a specific recognition motif that divided the protein into its two functional domains and activated SipA in a manner necessary for pathogenicity. Other caspase-3 cleavage sites identified in S. Typhimurium appeared to be restricted to secreted effector proteins, which indicates that this may be a general strategy used by this pathogen for processing of its secreted effectors

    Natural Cycles, Gases

    Get PDF
    The major gaseous components of the exhaust of stratospheric aircraft are expected to be the products of combustion (CO2 and H2O), odd nitrogen (NO, NO2 HNO3), and products indicating combustion inefficiencies (CO and total unburned hydrocarbons). The species distributions are produced by a balance of photochemical and transport processes. A necessary element in evaluating the impact of aircraft exhaust on the lower stratospheric composition is to place the aircraft emissions in perspective within the natural cycles of stratospheric species. Following are a description of mass transport in the lower stratosphere and a discussion of the natural behavior of the major gaseous components of the stratospheric aircraft exhaust

    Optimizing end-labeled free-solution electrophoresis by increasing the hydrodynamic friction of the drag-tag

    Full text link
    We study the electrophoretic separation of polyelectrolytes of varying lengths by means of end-labeled free-solution electrophoresis (ELFSE). A coarse-grained molecular dynamics simulation model, using full electrostatic interactions and a mesoscopic Lattice Boltzmann fluid to account for hydrodynamic interactions, is used to characterize the drag coefficients of different label types: linear and branched polymeric labels, as well as transiently bound micelles. It is specifically shown that the label's drag coefficient is determined by its hydrodynamic size, and that the drag per label monomer is largest for linear labels. However, the addition of side chains to a linear label offers the possibility to increase the hydrodynamic size, and therefore the label efficiency, without having to increase the linear length of the label, thereby simplifying synthesis. The third class of labels investigated, transiently bound micelles, seems very promising for the usage in ELFSE, as they provide a significant higher hydrodynamic drag than the other label types. The results are compared to theoretical predictions, and we investigate how the efficiency of the ELFSE method can be improved by using smartly designed drag-tags.Comment: 32 pages, 11 figures, submitted to Macromolecule

    Tropospheric Transmissivity Measurements Using the Raman Nitrogen Lidar Technique

    Get PDF
    LIDAR measurements in Azusa, California, during October 1972, were made in which the backscattered Raman-shifted nitrogen return was ratioed at different altitudes in order to obtain transmissivity. Rawinsonde data from nearby El Monte were used to determine the temperature and nitrogen number density altitude profiles. These data and other meteorological data are compared to the vertical aerosol and transmissivity structure determined by LIDAR. Also data analysis techniques are shown for obtaining q2 (transmissivity) and beta (attenuation coefficient) as a function of altitude
    • …
    corecore