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Abstract

Research on adolescence has largely focused on the particular biological and neural changes that 

place teens at risk for negative outcomes linked to increases in sensation-seeking and risky 

behavior. However, there is a growing interest in the adaptive function of adolescence, with work 

highlighting the dual nature of adolescence as a period of potential risk and opportunity. We 

examined how behavioral and neural sensitivity to risk and reward varies as a function of age 

using the Balloon Analog Risk Task. Seventy-seven children and adolescents (ages 8–17 years) 

completed the Balloon Analog Risk Task during an fMRI session. Results indicate that adolescents 

show greater learning throughout the task. Furthermore, older participants showed increased 

neural responses to reward in the OFC and ventral striatum, increased activation to risk in the mid-

cingulate cortex, as well as increased functional OFC–medial PFC coupling in both risk and 

reward contexts. Age-related changes in regional activity and interregional connectivity explain 

the link between age and increases in flexible learning. These results support the idea that 

adolescents’ sensitivity to risk and reward supports adaptive learning and behavioral approaches 

for reward acquisition.

INTRODUCTION

Adolescence has been largely recognized as a period of heightened risk and poor decision-

making; however, adolescence is also a period of opportunity for learning and skill 

acquisition. Although neurodevelopmental research has begun to shed light on neural 

mechanisms that support changes in risk-taking and sensation-seeking behaviors during 

adolescence (Steinberg et al., 2008), empirical work and theoretical models of adolescent 

brain development focus on how these behaviors are the result of deficient or ineffective 

circuitry (see Telzer, 2016). Several neurobiological models have proposed that early-

maturing subcortical regions coupled with slower-developing prefrontal regions underlies 

increased risk taking during adolescence (Steinberg, 2010; Casey, Jones, & Hare, 2008; 

Ernst, Pine, & Hardin, 2006), comparing adolescent behavior to a car in full throttle but with 

ineffective breaks (Steinberg, 2010). Although these heuristics are useful tools (see Casey, 

2015; but see Pfeifer & Allen, 2016), they can pathologize adolescence as a period of 

deficiency and overlook the potentially adaptive role of adolescence as a period of 

opportunity for learning and the acquisition of new ideas, skills, and interests (Crone & 

Dahl, 2012).
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Emerging evidence supports the idea of adolescence as a period of adaptive flexibility. 

Adolescent rodents (Pattwell et al., 2012), nonhuman primates (Spear, 2000), and humans 

(Humphreys, Lee, & Tottenham, 2013) show behavioral patterns that support increased 

flexibility, even at potential risk to their health and reproductive success. For instance, 

human adolescents show age-related increases in risk taking as well as adolescent-specific 

increases in learning in a risk-taking context (Humphreys et al., 2016), and adolescents show 

greater tolerance for ambiguity during risk taking than do adults (Tymula et al., 2012), 

which might promote learning during adolescence. Adolescent mice also show increased 

flexibility and learning when pursuing rewards (Johnson & Wilbrecht, 2011). This flexibility 

supports adolescents’ learning of the environment and helps them gain access to food and 

reproductive opportunities (Vigilant et al., 2015). In light of this research, some have 

suggested that the unique configuration of adolescent neural systems serves an adaptive 

function necessary for appropriate development (Casey, 2015; Crone & Dahl, 2012).

Although no empirical studies have explored the neurodevelopment of learning and flexible 

behavior in risky contexts, some initial evidence highlights the potentially adaptive function 

of still-developing neural states for learning. Although the heuristic models utilized in 

adolescent neurodevelopmental research generally highlight the maladaptive nature of 

delayed prefrontal development (see Casey, 2015), slower maturation of PFC may actually 

promote an individual’s ability to flexibly adapt to new contexts. For instance, early 

adversity (e.g., maternal deprivation, neighborhood violence) is associated with accelerated 

life history trajectories (Ellis, Figueredo, Brumbach, & Schlomer, 2009) including early 

transition to adult-like PFC functioning (Gee et al., 2013). Although this acceleration is 

hypothesized to serve a compensatory role, early transition to adult neural states is also 

associated with developmental trade-offs that can result in suboptimal outcomes such as 

decreases in plasticity and academic achievement (Shaw et al., 2006), suggesting that later-

developing PFC function may be adaptive and support learning and skill acquisition.

Despite this initial evidence, we know relatively little about neurodevelopmental 

mechanisms that support age-related changes in flexibility and learning. To address this gap, 

we examined flexible learning in the context of risk and reward contingencies. Youth ages 

8–17 years completed the Balloon Analog Risk Task (BART; Lejuez et al., 2002) during an 

fMRI session. The BART mirrors real-world behavior in that risky behavior is rewarded up 

until a point but then becomes detrimental to the individual’s goals. The task creates a 

context for investigating learning since participants can use feedback they receive on each 

trial to modify or reinforce their behavior (Humphreys et al., 2016). We examined age-

related changes in risk-taking behavior across the task as well as age-related differences in 

neural activation and connectivity in motivational (e.g., ventral striatum [VS] and OFC) and 

regulatory (e.g., lateral PFC and anterior cingulate) regions involved in learning and goal-

directed behavior. We hypothesized that adolescents would be more likely than younger 

participants to explore and better learn the parameters of the task. Adolescents could then 

utilize this learning to guide their risk-related behavior in pursuit of rewards. We further 

hypothesized that neurodevelopmental changes in motivational and regulatory regions would 

mediate these age-related increases in flexible learning.
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METHODS

Participants

Eighty healthy children and adolescents completed an fMRI scan. Two participants were 

excluded because of excessive head motion (>2.0 mm slice-to-slice on ≥10% of slices) 

during the session, and an additional participant was excluded because of corrupted/missing 

data, leaving 77 participants in the final sample (41 girls; Mage = 14.23 years, SD = 2.76, 

range = 8.1–17.7 years). Participants (54 European American, 18 African American, 1 Asian 

American, 2 Latin American, and 3 mixed/multiple ethnicity) provided written consent and 

assent in accordance with the University of Illinois’ institutional review board.

Risk and Reward Task

Participants completed a version of the BART, a well-established experimental paradigm 

(Qu, Galvan, Fuligni, Lieberman, & Telzer, 2015; Telzer, Fuligni, Lieberman, Miernicki, & 

Galván, 2015; Lejuez et al., 2002) that measures participants’ willingness to take risks in the 

pursuit of rewards. Before the scan, participants were shown a box of age-appropriate prizes 

and were told that the more points they earned on the task, the more prizes that they could 

select at the end of the neuroimaging session. In reality, all participants were allowed to 

choose three prizes regardless of the number of points they earned. During the scan, 

participants were presented with a series of 24 balloons that they could choose to pump up 

in order to accrue points (Figure 1). Each pump increased the risk that the balloon would 

explode, and if the balloon exploded, participants lost all points they had accrued from that 

balloon. At any point after the first pump, participants could choose to cash out their points 

for that balloon, which were added to their total for the task. The running total of points 

earned was presented on the screen as a points meter. Participants were instructed that their 

goal was to earn as many points as they could during the task. Each event (e.g., larger 

balloon following a pump, new balloon following cashed or exploded trial) was separated 

with a random jitter (500–4000 msec). Balloons were presented in a fixed order, with the 

explosion rate ranging from 4 to 10 pumps, although this was not made explicit to 

participants. The task was self-paced and would not advance unless the participant made the 

choice to either pump or cash-out.

Behavior Modeling—We measured several indices of behavior to tap risk behavior and 

learning on the task. “Risk behavior” represents participants’ willingness to engage in risk 

taking. This was calculated as the average number of pumps on cashed trials. The number of 

pumps on explosion trials was not included because those trials are artificially constrained 

and end before participants have reached their maximum tolerance for risk (Lejuez et al., 

2002). This metric has been used widely as an index of risk taking and is associated with 

higher levels of self-reported risk-taking behavior in the real world both concurrently and 

longitudinally (Qu et al., 2015; Telzer et al., 2015; Lejuez et al., 2002).

“Learning” was indexed by participants’ feedback sensitivity or how likely they are to use 

information from the previous trial to guide their behavior on each subsequent trial and to 

adapt when their current behavior is resulting in maladaptive outcomes (Humphreys et al., 

2015). To obtain this index, we used hierarchical linear modeling (Raudenbush & Bryk, 
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2002), in which trials (24 total) were nested within participants, and the outcome variable 

was the number of pumps on a given trial. We modeled whether the number of pumps on a 

given trial varied depending on the outcome of the previous trial. Consistent with prior 

studies (Ashenhurst, Bujarski, Jentsch, & Ray, 2014; Mata, Hau, Papassotiropoulos, & 

Hertwig, 2012), our Level 1 equation was

Total pumps on a particular trial (i) for a particular adolescent (j) was modeled as a function 

of the average number of pumps across the task (b0j) and whether the previous trial (b1j) was 

an explosion or cash-out (coded Explosion(N − 1) = 0; Cash-Out(N − 1) = 1). In addition, we 

included two controls, including whether the current trial resulted in an explosion or a cash-

out (b2j; coded Explosion(N) = 1; Cash-Out(N)) = 0) and the trial number (b3j).

To use the learning index in our neural and behavioral analyses, we extracted empirical 

Bayes estimates for each participant. Empirical Bayes estimates are optimally weighted 

averages that combine individual average slopes by combining estimates from both the 

individual and the group and “shrink” individual specific estimates toward the overall mean 

(Diez-Roux, 2002). The extracted estimate represents individual differences in how 

participants change their subsequent behavior (both magnitude and direction) based on the 

type of feedback they received on the prior trial. Larger positive values (e.g., >0) are 

indicative of greater learning (i.e., participants increase pumps following a cashed balloon 

but decrease pumps following an exploded balloon), whereas values closer to zero indicate 

little or no learning (i.e., participants increased or decreased their pump behavior at random 

with respect to previous feedback). Although negative values (e.g., <0) are possible, this 

would indicate that participants were increasing pumps after explosions and decreasing 

pumps after cash-outs, an especially irrational strategy.

Additional behavioral measures included number of explosions or the number of times 

participants pumped balloons until they popped as well as total points earned on the task, 

which represents participants’ successful acquisition of resources. Higher total point values 

are indicative of more optimal behavior on the task.

fMRI Data Acquisition

Imaging data were collected using a 3-T Siemens Trio MRI scanner (Siemens, Berlin, 

Germany). The BART included T2*-weighted EPI (slice thickness = 3 mm, 38 slices, 

repetition time [TR] = 2 sec, echo time [TE] = 25 msec, matrix = 92 × 92, field of view 

[FOV] = 230 mm, voxel size = 2.5 × 2.5 × 3 mm3). In addition, structural scans consisted of 

a T2*-weighted, matched-bandwidth (MBW), high-resolution, anatomical scan (TR = 4 sec, 

TE = 64 msec, FOV = 230, matrix = 192 × 192, slice thickness = 3 mm, 38 slices) and a T1* 

magnetization-prepared rapid acquisition gradient-echo (MPRAGE; TR = 1.9 sec, TE = 2.3 

msec, FOV = 230, matrix = 256 × 256, sagittal plane, slice thickness = 1 mm, 192 slices). To 
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maximize brain coverage, MBW and EPI scans were obtained using an oblique axial 

orientation.

fMRI Data Preprocessing and Analysis—Preprocessing and data analysis utilized 

Statistical Parametric Mapping (SPM8; Wellcome Department of Cognitive Neurology, 

Institute of Neurology, London, UK) software package. Preprocessing steps involved spatial 

realignment to correct for head motion (included participants had no motion in excess of 1.5 

mm between-slice motion); coregistration of all images to the high-resolution T1* 

MPRAGE structural scan; and segmentation into gray matter, white matter, and 

cerebrospinal fluid. Transformation matrices used in MPRAGE segmentation were applied 

to MBW and EPI images to warp them into the standard stereotactic space defined by the 

Montreal Neurological Institute (MNI) and the International Consortium for Brain Mapping. 

EPI images (voxel size = 3 mm3) were smoothed using an 8-mm Gaussian kernel, FWHM to 

increase signal-to-noise ratios in the functional images. The general linear model in SPM8 

was then used to convolve each trial with a canonical hemodynamic response function. Low-

frequency drift across the time series was removed using a high-pass temporal filter with a 

128-sec cutoff, and a restricted maximum likelihood algorithm with an autoregressive model 

order of 1 was used to estimate serial autocorrelations.

The BART was modeled using an event-related design with trial duration corresponding to 

participant RT on a given pump or cash-out or using the average RT across the task on 

explosions. Fixed-effects models included a general linear model for each condition of 

interest, which included pump decisions, cash-out decisions, and explosion events. We 

modeled pump decisions separately for trials that ended in cash-outs and trials that ended in 

explosions. Because the number of pumps is artificially constrained on balloons that end in 

explosions, analyses were only performed with pump decisions on balloons that ended in 

cash-outs, as done in prior research (Telzer et al., 2015; Lejuez et al., 2002). The jittered 

intertrial periods were not modeled and served as the implicit baseline for the task. A 

parametric modulator (PM) was included for each of the three conditions of interest and 

represents the pump number for a balloon at each pump or cash-out decision. All the PM 

values were mean-centered by balloon within participants, such that for each balloon, all PM 

values summed to 0. The PM served to control for differences across pumps within a balloon 

trial. Contrasts were then computed at the individual level for each condition of interest.

In addition, we examined neural connectivity by conducting psychophysiological interaction 

(PPI) analyses. We used structurally defined ROIs (Wake Forest University PickAtlas; 

Maldjian, Laurienti, Kraft, & Burdette, 2003) as the seed regions, including the medial OFC 

and bilateral VS. These regions have been strongly implicated in reward-related associative 

learning, being involved in the formation and manipulation of stimulus– reward expectations 

(Schoenbaum & Roesch, 2005; Kelley, 2004; Gottfried, O’Doherty, & Dolan, 2003) and as 

such may be involved in developmental processes that support exploration and learning. PPI 

analyses utilized a generalized form of context-dependent PPI form the automated 

generalized PPI toolbox in SPM (McLaren, Ries, Xu, & Johnson, 2012). Deconvolved time 

series were extracted from the medial OFC and VS ROI for each participant to create the 

physiological variables. Each trial type was then convolved with the canonical HRF to create 

the psychological regressor. Finally, the physiological variable was multiplied with the time 
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series from the psychological regressors to create the PPI term. This interaction term was 

then used to identify regions that covary with the seed region in a task-dependent manner. 

Each participant has a regressor computed that represents the deconvolved BOLD signal, 

which was included alongside each psychological and PPI term for each event type to create 

a generalized PPI model.

Random effects, group level analyses were run on all individual subject contrasts using 

GLMFlex, which corrects for variance–covariance inequality, removes outliers and sudden 

activation changes in the brain, partitions error terms, and analyzes all voxels containing 

data (mrtools.mgh.harvard.edu/index.php/GLM_Flex). Because not all participants had 

sufficient explosion events to model successfully, group level analyses focused on pump and 

cash-out decisions. Group-level analyses involved whole-brain regressions using age as a 

continuous covariate. Correction for multiple comparisons was run using a Monte Carlo 

simulation through the updated version (April 2016) 3dFWHMx and 3dClustSim programs 

from the AFNI software package (Ward, 2000) using the group level brain mask. The 

simulation resulted in a voxel-wise threshold of p < .001 and a minimum cluster size of 46 

voxels for the whole brain, corresponding to p < .05, family-wise error corrected.

Finally, mediation analyses tested how age was associated with behavioral indices of task 

performance via brain activation during the task. Mediation was performed using the 

PROCESS macro methods outlined by Hayes (2013). All variables of interest were 

standardized before entering them into mediation models and using 1000 sample 

bootstrapping, the magnitude and significance of the indirect effect as well as a bias-

corrected confidence interval (CI) were calculated. For all mediation models, age was 

entered as the predictor variable, the brain as the mediator, and behavioral indices as the 

outcome. Mediators were added into separate models such that each model only contained 

one behavioral measure or brain region as the mediator.

RESULTS

Behavioral Results

Age-related Increases in Risk and Learning—We ran bivariate correlations between 

age of participants and behavioral indices of interest (see Table 1 for means, SDs, ranges, 

and correlations between all study variables). Age was associated with more risk behavior 

(i.e., higher average pumps; r = .36, p = .001) and learning (i.e., pumping more after a cash-

out and less after an explosion; r = .51, p < .001). Moreover, increased learning was 

associated with higher points earned (r = .50, p < .001), suggesting the utility of learning and 

its downstream influence on how participants acquire adaptive outcomes.

Learning Explains Age Differences in Risk-taking Behavior—Next, we examined 

whether older participants’ increased learning explained the link between age and risk taking 

during the BART. In other words, does the propensity of older youth to learn more from the 

task environment explain why they tend to take more risks across the task? As shown in 

Figure 2, we found a significant indirect effect such that the degree of learning exhibited by 

participants mediates the relationship between age and risk behavior during the task, 
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suggesting that older adolescents’ greater risk-taking behaviors is explained, in part, because 

they are learning from the parameters of the task to a greater extent.

We also examined whether this increased learning and the increased propensity to take risks 

benefits participants (i.e., they would earn more points) or whether the associated costs of 

increased explosions would offset their higher rates of pumping (i.e., they would earn fewer 

points). We found that participants’ risk behavior mediates the relationship between learning 

and the total number of points that participants earned (Figure 2). In other words, 

participants who show heightened levels of learning are more likely to earn more points 

because they engage in greater amounts of risk behaviors. Together, results demonstrate that 

older participants’ show increases in learning and risk taking across the task and that these 

behavioral patterns serve an adaptive function with respect to resource acquisition.

fMRI Results

Age-related Differences in Risk- and Reward-related Neural Activity—We 

examined the effects of age on our conditions of interest by entering Age as a continuous 

regressor in whole-brain regression analyses (for main effects without Age, see Table 2). 

Areas showing age-related increases in risk-related activity (i.e., during pumps) included 

regions of the mid-cingulate cortex (MCC) and bilateral calcarine gyrus, with an additional 

cluster in the right superior frontal gyrus (SFG) nearing threshold (k = 42). For reward-

related activity (i.e., during cash-outs), we found age-related increases in the VS and medial 

OFC. No regions showed significant age-related decreases during risk or reward (Table 3; 

Figure 3).

Links between Age-related Neural Activation and Learning—Next, we examined 

whether regions showing age-related increases in activation were associated with learning. 

To do so, we extracted parameter estimates of signal intensity from the regions that showed 

significant age effects and performed mediation analyses to examine whether activity in 

these regions explained the link between age and learning. Correlation analyses indicated 

that all regions showing age-related increases in activation were related to learning (Table 4). 

However, mediation analyses indicate that reward-related activity in the medial OFC was the 

only region to significantly explain the link between age and learning (indirect effect: B = .

11, SE = .05, 95% CI [.03, .23]). These findings suggest that developmental differences in 

these regions support increased learning within the task environment observed in older 

adolescents.

Functional Connectivity

Age-related Changes in Connectivity during Risk and Reward—Next, we ran PPI 

analyses using our medial OFC and VS seed regions (for main effects without Age, see 

Table 2). We entered Age as a regressor in whole-brain PPI analyses. We found that the 

medial OFC shows age-related increases in functional connectivity with the medial PFC 

(mPFC) during risk and with the mPFC and posterior cingulate cortex (PCC) during reward 

(Table 3; Figure 4). There were no regions that showed age-related decreases in connectivity 

with the medial OFC during either condition. We found no regions that showed age-related 

change in VS connectivity.
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Links between Age-related Neural Connectivity and Learning—Finally, we 

examined whether age-related differences in OFC–mPFC connectivity explain age-related 

differences in learning. Correlation analyses indicate that all regions showing age-related 

increases in OFC connectivity during both risk and reward were related to increased learning 

(Table 4); however, only age-related increases in OFC–mPFC functional connectivity during 

reward significantly explain the link between age and learning (indirect effect: B = .12, SE 
= .05, 95% CI [.04, .25]).

DISCUSSION

A major focus of research on neural development during adolescence has been the neural 

mechanisms that support changes in risk taking and sensation seeking (Casey, 2015). 

However, much of the theoretical and empirical work on adolescent neural development has 

highlighted aspects of adolescent neural circuitry, which are deficient or ineffective, while 

ignoring potentially adaptive roles for developing neural circuits (see Telzer, 2016; Casey, 

2015). In contrast, we focused on aspects of adolescent neurodevelopment that might 

support learning and, in turn, adaptive outcomes. Our findings highlight adolescence as a 

period of behavioral and neural flexibility, which leads to increases learning within risky 

contexts. Additionally, this flexibility can drive behaviors that extract adaptive outcomes 

from these contexts, suggesting that a more-nuanced view of adolescence is warranted. 

Instead of characterizing still-developing neural systems as deficient, developmentally 

appropriate neural circuitry can play an adaptive role in adolescent behavior.

Consistent with prior research, we found that participants showed age-related increases in 

risk taking. Supporting the theory that increased exploration of the environment, even at 

potential risk, supports adaptive behavior, we found that age-related increases in learning 

(i.e., participants’ successfully exploring the task parameters and changing their behavior in 

response to feedback) explained age-related increases in the tendency to take more risks 

during adolescence, and greater risk taking was linked to greater acquisition of points. 

Although previous work has suggested the potential utility of risk taking during adolescence 

(Spear, 2000), the current literature generally discusses and tests how increased risk taking 

during adolescence is impulsive and irrational behavior driven by increases in sensitivity to 

motivational stimuli (see Casey, 2015; Steinberg et al., 2008). Results in this study suggest 

that risk taking may emerge, in part, from an increased ability to flexibly learn from the 

environment during adolescence. Such learning from environmental feedback likely plays an 

adaptive role in adolescent skill acquisition, establishment of new social networks, and 

identity formation.

Context is an important determinate of whether a propensity to take risks is adaptive or 

maladaptive (Humphreys et al., 2013). In an uncertain environment, increased risk taking 

may expose adolescents to opportunities for learning, which in turn may help the individual 

to increase the likelihood of attaining adaptive outcomes. When we consider the 

evolutionary history of adolescence, it is likely that there are trade-offs on a population level 

for a developmental period marked by increased risk, where the risk of exposure to 

detrimental outcomes is weighted against the opportunities for food and mate resources that 

exploration promotes (Spear, 2000). This study suggests that, as children transition into 
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adolescence, they are more willing to engage in these trade-offs between risk taking and 

learning than are younger children, behavior that may result in adaptive outcomes.

At the neural level, we found that age-related increases in both motivational and regulatory 

neural systems supported flexible learning. Motivational regions included the VS and OFC. 

The VS, a region with a high density of dopaminergic neurons, has been classically 

implicated in reward anticipation and reactivity and shows heightened activation during 

adolescence (Galvan et al., 2005, 2006; see Telzer, 2016). The OFC’s role in reward 

processing involves assigning and updating the relative reward value of actions and stimuli 

(Gottfried et al., 2003; O’Doherty, Kringelbach, Rolls, Hornak, & Andrews, 2001). This 

study’s findings of age-related increases in these two regions during reward acquisition fit 

well with previous research. Furthermore, we found that OFC reward-related activity 

explained links between age and increases in learning, which supports previous research 

implicating the OFC in reward-related learning (Schoenbaum & Roesch, 2005). Reward-

related activity in the OFC may help adolescents track the motivational salience of points in 

the task as well as integrate reward (i.e., cash-outs) and punishment (i.e., explosion) 

feedback from the task into their cost–benefit representations for future risk taking.

We also found age-related increases in regulatory regions during risk decisions, including 

the MCC, which has been implicated in action selection (Shackman et al., 2011; Vogt, 

2005). Developmental increases in reward-related activation in the OFC may reflect greater 

valuation of reward which drives changes in future behavior, whereas increases in regulatory 

and action selection regions may support increases in goal-directed behavior enactment. 

Changes in these neural systems support both learning and risk taking by increasing 

attention to certain stimuli, weighting information gained in rewarding contexts more so than 

children. This weighted information is in turn used to a greater degree to direct behavior 

during this period of development. However, an overweighting of reward-related information 

likely also is responsible for adolescents sometimes pursuing rewarding contexts without 

complete regard for the potential negative consequences. These results highlight the 

importance of two types of neural systems in supporting flexible learning and reflect a 

growing understanding that complex behaviors are not supported by the development of 

single brain regions, but rather a system of regions that play particular computational roles in 

the service of behavior.

Finally, to examine connectivity of circuits that may be important for learning, we examined 

how age-related changes in functional connectivity between motivational and regulatory 

regions support flexible behavior. We found age-related increases in functional connectivity 

between the medial OFC and the mPFC during both risk and reward conditions. Medial 

regions of the OFC show both structural (Öngür & Price, 2000) and positive functional 

(Kahnt et al., 2012) connectivity to regions of the mPFC, which has been implicated in 

associative learning and response adaptation (Euston, Gruber, & McNaughton, 2012) and are 

sensitive to risk conditions (Van Leijenhorst et al., 2010). Both regions have been implicated 

in risk-taking behavior (Van Duijvenvoorde et al., 2014; Chein, Albert, O’Brien, Uckert, & 

Steinberg, 2011) and show positive functional connectivity during risky decision-making in 

adults (Cohen, Heller, & Ranganath, 2005). Although the development of these circuits 

across adolescence has not been reported, resting state functional connectivity between OFC 
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and mPFC regions has been shown to differ between individuals with drug addiction and 

controls (Janes, Nickerson, & Kaufman, 2012). These findings suggest that the development 

of OFC–mPFC circuitry plays an important role in risk-taking behavior.

Age-related increases in OFC–mPFC connectivity provide a mechanism for age-related 

increases in learning, suggesting that increased OFC–mPFC functional connectivity reflects 

a more integrated motivational regulatory system, with greater intercommunication between 

regions involved in reward processing and regions involved in action updating and selection. 

This supports previous findings that still-developing top–down regulation of the mPFC is 

associated with adaptive outcomes (Gee et al., 2013) and that, similar to other forms of 

physiological development (e.g., pubertal and reproductive timing), acceleration of neural 

development likely will involve trade-offs, which curtail extended learning and plasticity 

(Ellis et al., 2009). This study further suggests that the development of learning depends not 

only on localized activational increases but also on how neural regions interact, which 

underscores the importance of circuit-based understandings of neurodevelopmental 

processes (Casey, 2015). Mapping the functional significance of system level 

neurodevelopmental changes for adolescent behavior is an important future step for the 

examination of the neurobiological mechanisms driving the increases in risk taking and 

learning that characterize adolescence. When studying complex processes, such as risky 

decision-making, both localized and circuit-based changes should be considered as possible 

supporting mechanisms for behavior changes seen across development (Casey, Galván, & 

Somerville, 2016). Although research localizing function to particular brain regions has 

greatly contributed to our understanding of neural function, the brain operates as an 

integrated circuit, and studying developmental changes in individual regions may have a 

finite utility.

Although the results reported in the current study suggest an exciting new perspective on 

adolescent risk- and reward-related neural development, several compelling questions 

remain to be explored. We examined developmental trends in risk- and reward-relatedneural 

processes and functional connectivity in a large sample of 8- to 17-year-olds. Because of the 

constraints of participant behavior, we were unable to examine developmental trends in 

neural sensitivity to explosion events, and future research should aim to close this gap in our 

understanding of developmental trends in neural sensitivity to loss. Another constraint for 

interpreting the reported results arises from the complexity of the BART and the variety of 

strategies participants could conceivably employ during the task (for a review of some 

possibilities, see Wallsten, Pleskac, & Lejuez, 2005). As such, it is difficult to describe any 

one behavioral pattern as optimal in its own right, and therefore, we relied on strong 

associations with the total points participants earned to characterize higher learning as more 

optimal behavior. Additionally, previous research has suggested that developmentally 

significant changes in these neural systems likely continue further through the end of 

adolescence and into young adulthood (Braams, van Duijvenvoorde, Peper, & Crone, 2015; 

Van Leijenhorst et al., 2010). Future research should seek to extend the results reported in 

the current study by including participants through the transition from adolescence to young 

adulthood. Such a study could inform whether the developmental effects we report here 

continue to increase linearly into young adulthood or whether learning and exploration 

plateau or even diminish. Finally, the cross-sectional nature of the current study limits our 
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ability to draw any conclusions about individual differences in the neural and behavioral 

developmental trajectories we examined. Future research should examine how the processes 

of exploration, risk taking, and learning change within individuals over time. Longitudinal 

examination of these behavioral and neurodevelopmental processes can help to confirm and 

extend our understanding of how individual differences in these trajectories contribute to 

differences in adaptive and maladaptive outcomes across adolescence.

In summary, our findings support a new perspective of the behavioral and neurobiological 

changes that characterize adolescence. Development of motivational and regulatory neural 

circuitry supports adolescents’ learning, which contributes to increases in risk taking. 

However, in contrast with much of the literature on adolescent development concerning risk 

behavior, we found that risky decisions emerge in part through adolescents’ increased 

propensity for flexible learning, which suggests an adaptive role for still-developing neural 

circuitry. These results complement findings in nonhuman models, which suggest that 

adolescent animals (Vigilant et al., 2015; Johnson & Wilbrecht, 2011) show unique 

behavioral patterns that support flexibility in service of adaptive goals. This adaptive role for 

developing neural circuitry also supports previous suggestions that accelerated development 

may actually be detrimental and linked to negative outcomes (Ellis et al., 2009). Instead of a 

one-to-one correspondence between maturity and function, normative development may rely 

on neural and behavioral states that happen in a particular, developmentally appropriate 

fashion. Our findings underscore the importance of paying greater attention to the 

potentially adaptive roles that still-developing neural circuitry can have for adolescent 

behavior and the contexts in which these propensities for seeking learning opportunities may 

be appropriately channeled.
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Figure 1. 
BART. Participants can choose to Pump to increase the size of the balloon or to Cash Out to 

add points to their Points Meter. However, if participants pump too many times, the balloon 

will explode.
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Figure 2. 
Learning mediates the link between age and risk behavior, which is associated with more 

total points. Direct effects are indicated by the coefficients (grayed-out) above the dashed 

lines. For the path from Learning to Risk Behavior, coefficients to the left are for the first 

model and coefficients to the right are for the second. For indirect effects, coefficients are 

standardized with the SD in parentheses, and all other coefficients are standardized. *p < .

05, **p < .01, **p < .001.
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Figure 3. 
(A) During reward (e.g., cash-outs), we found age-related increases in VS and medial OFC 

activation. (B) During risk (e.g., pumps), we found age-related increases in MCC and R SFG 

activation.
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Figure 4. 
We found age-related increases in (A) both mPFC and PCC functional connectivity with 

OFC during reward and (B) mPFC functional connectivity with OFC during risk.
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Table 4

Associations between Neural Regions Showing Age-related Increases in Activation and Behavioral Learning

Neural Regions Age Risk Behavior Learning

Activation

Risk

 MCC .40**** .20* .35****

 R SFGa (k = 42) .39**** .28** .31****

Reward

 Medial OFC .46**** .41**** .42****

 VS .46**** .18 .28**

PPI (Medial OFC Seed)

Risk

 mPFC .45**** .25** .30***

Reward

 mPFC .52**** .33**** .35****

 PCC .42**** .27** .28**

*
p < .1

**
p < .05

***
p < .01

****
p < .001.

a
Cluster is subthreshold.
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