852 research outputs found

    QUANTUM CORRECTIONS AND EXTREMAL BLACK HOLES

    Get PDF
    We consider static solutions of two dimensional dilaton gravity models as toy laboratories to address the question of the final fate of black holes. A non perturbative correction to the CGHS potential term is shown to lead classically to an extremal black hole geometry, thus providing a plausible solution to Hawking evaporation paradox. However, the full quantum theory does not admit an extremal solution.Comment: 12 pages, LaTex, no figures. We have improved the main argument leading to the non-existence of an extremal black hole in the quantum theor

    Energy-momentum tensor for scalar fields coupled to the dilaton in two dimensions

    Get PDF
    We clarify some issues related to the evaluation of the mean value of the energy-momentum tensor for quantum scalar fields coupled to the dilaton field in two-dimensional gravity. Because of this coupling, the energy-momentum tensor for the matter is not conserved and therefore it is not determined by the trace anomaly. We discuss different approximations for the calculation of the energy-momentum tensor and show how to obtain the correct amount of Hawking radiation. We also compute cosmological particle creation and quantum corrections to the Newtonian potential.Comment: 18 pages, RevTex, no figures. Some changes have been added. To appear in Physical Review

    Massless Interacting Scalar Fields in de Sitter space

    Full text link
    We present a method to compute the two-point functions for an O(N)O(N) scalar field model in de Sitter spacetime, avoiding the well known infrared problems for massless fields. The method is based on an exact treatment of the Euclidean zero modes and a perturbative one of the nonzero modes, and involves a partial resummation of the leading secular terms. This resummation, crucial to obtain a decay of the correlation functions, is implemented along with a double expansion in an effective coupling constant λ\sqrt\lambda and in 1/N1/N. The results reduce to those known in the leading infrared approximation and coincide with the ones obtained directly in Lorentzian de Sitter spacetime in the large NN limit. The new method allows for a systematic calculation of higher order corrections both in λ\sqrt\lambda and in 1/N1/N.Comment: 8 pages. Summarized version of JHEP 09 (2016) 117 [arXiv:1606.03481]. Published in the Proceedings of the 19th International Seminar on High Energy Physics (QUARKS-2016

    O(N)O(N) model in Euclidean de Sitter space: beyond the leading infrared approximation

    Get PDF
    We consider an O(N)O(N) scalar field model with quartic interaction in dd-dimensional Euclidean de Sitter space. In order to avoid the problems of the standard perturbative calculations for light and massless fields, we generalize to the O(N)O(N) theory a systematic method introduced previously for a single field, which treats the zero modes exactly and the nonzero modes perturbatively. We compute the two-point functions taking into account not only the leading infrared contribution, coming from the self-interaction of the zero modes, but also corrections due to the interaction of the ultraviolet modes. For the model defined in the corresponding Lorentzian de Sitter spacetime, we obtain the two-point functions by analytical continuation. We point out that a partial resummation of the leading secular terms (which necessarily involves nonzero modes) is required to obtain a decay at large distances for massless fields. We implement this resummation along with a systematic double expansion in an effective coupling constant λ\sqrt\lambda and in 1/N. We explicitly perform the calculation up to the next-to-next-to-leading order in λ\sqrt\lambda and up to next-to-leading order in 1/N. The results reduce to those known in the leading infrared approximation. We also show that they coincide with the ones obtained directly in Lorentzian de Sitter spacetime in the large N limit, provided the same renormalization scheme is used.Comment: 31 pages, 5 figures. Minor changes. Published versio

    Negative ion Time Projection Chamber operation with SF6_{6} at nearly atmospheric pressure

    Full text link
    We present measurements of drift velocities and mobilities of some innovative negative ion gas mixtures at nearly atmospheric pressure based on SF6_{6} as electronegative capture agent and of pure SF6_{6} at various pressures, performed with the NITEC detector. NITEC is a Time Projection Chamber with 5 cm drift distance readout by a GEMPix, a triple thin GEMs coupled to a Quad-Timepix chip, directly sensitive to the deposited charge on each of the 55 Ă—\times 55 ÎĽ\mum2^2 pixel. Our results contribute to expanding the knowledge on the innovative use of SF6_{6} as negative ion gas and extend to triple thin GEMs the possibility of negative ion operation for the first time. Above all, our findings show the feasibility of negative ion operation with He:CF4_4:SF6_{6} at 610 Torr, opening extremely interesting possibility for next generation directional Dark Matter detectors at 1 bar
    • …
    corecore