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Abstract: We consider an O(N) scalar field model with quartic interaction in d-dimen-

sional Euclidean de Sitter space. In order to avoid the problems of the standard perturba-

tive calculations for light and massless fields, we generalize to the O(N) theory a systematic

method introduced previously for a single field, which treats the zero modes exactly and the

nonzero modes perturbatively. We compute the two-point functions taking into account

not only the leading infrared contribution, coming from the self-interaction of the zero

modes, but also corrections due to the interaction of the ultraviolet modes. For the model

defined in the corresponding Lorentzian de Sitter spacetime, we obtain the two-point func-

tions by analytical continuation. We point out that a partial resummation of the leading

secular terms (which necessarily involves nonzero modes) is required to obtain a decay at

large distances for massless fields. We implement this resummation along with a systematic

double expansion in an effective coupling constant
√
λ and in 1/N . We explicitly perform

the calculation up to the next-to-next-to-leading order in
√
λ and up to next-to-leading

order in 1/N . The results reduce to those known in the leading infrared approximation.

We also show that they coincide with the ones obtained directly in Lorentzian de Sitter

spacetime in the large N limit, provided the same renormalization scheme is used.
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1 Introduction

The study of interacting quantum fields in de Sitter geometry is of interest for a variety of

reasons. In inflationary models, interactions could lead to non-Gaussianities in the cosmic

microwave background. Quantum effects could also contribute to the dark energy, and

explain, at least partially, the present acceleration of the universe. From a conceptual point
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of view, being maximally symmetric, de Sitter geometry allows for a number of explicit

analytic calculations that illustrate the role of the curved background on the dynamics of

the quantum field, and also the backreaction of the quantum fields on the geometry.

Although at first sight quantum field theory (QFT) in de Sitter geometry should be

simpler than on other cosmological backgrounds, the exponential expansion of the metric

produces an effective growth in the couplings. Indeed, when considering a λφ4 theory, a

diagram with L loops will be proportional to (λH2/m2)L, where m is the mass of the

quantum field and H the Hubble constant [1]. Therefore, the usual perturbative calcula-

tions break down for light (m2 � H2) quantum fields. In the massless limit, minimally

coupled scalar fields do not admit a de Sitter invariant vacuum state due to infrared (IR)

divergences, and the two-point functions do not respect the symmetries of the classical

theory [2, 3].

There have been several attempts to cure the IR problem, all of them introducing some

sort of nonperturbative approach. The well known stochastic approach [4, 5] assumes that

the long distance fluctuations of the quantum field behave as a random classical field, that

satisfies a Langevin equation. From the corresponding Fokker-Planck equation one can ob-

tain finite and de Sitter invariant correlation functions even for minimally coupled massless

fields and fields with negative mass-squared, provided there are interaction terms that sta-

bilize the potential. The formalism has proven very useful in understanding the IR effects

and, in particular, the spontaneous symmetry breaking phenomena (see for instance [4–

6]). However, it does not provide a systematic way of accounting for the interactions of

the short distance fluctuations, which are generically neglected, nor a justification for the

classical treatment of the field beyond the leading IR approximation.

In the context of QFT in Lorentzian de Sitter spacetime, many of the nonperturbative

approaches are based in mean field (Hartree) [7–9] or large N approximations [10–13],

which in turn can be formulated through the 2PI effective action (2PIEA) [14]. Other

approaches consider the analysis of the Schwinger-Dyson equations (or their nonequilibrium

counterpart, the Kadanoff-Baym equations), combined with a separation of long and short

wavelengths using a physical momentum decomposition [15, 16]. There are also calculations

based on the dynamical renormalization group, and on the exact renormalization group

equation for the effective potential [17, 18]. In relation to the development of a method

for computing correlation functions in a systematically improvable way, the difficulties one

finds with these approaches are mainly of technical nature.

An alternative and simpler approach emerges for quantum fields in Euclidean de Sitter

space. As this is a compact space (a sphere of radius H−1) the modes of a quantum field are

discrete, and the origin of the IR problems can be traced back to the zero mode [19]. This

important observation suggests itself the solution: the zero mode should be treated exactly

while the nonzero modes (UV modes in what follows) could be treated perturbatively.

Using this idea, it has been shown that in the massless λφ4 theory the interaction turns on

a dynamical squared mass for the field, that in the leading IR limit is proportional to
√
λH2.

Indeed, in the Euclidean space, this mass cures the IR problems. Moreover, a systematic

perturbative procedure for calculating the n-point functions has been delineated in ref. [20],

where it was shown that, for massless fields, the effective coupling is
√
λ instead of λ. It
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has been pointed out that this procedure together with an analytical continuation could be

used to cure some IR problems also in the Lorentzian de Sitter spacetime, and in particular

to obtain n-point functions that respect the de Sitter symmetries. However, so far explicit

calculations have been restricted to obtaining corrections to the variance of the zero mode,

which has no analog quantity in the Lorentzian de Sitter spacetime. In particular, an

explicit calculation of the inhomogeneous two-point functions of the scalar field that can

lead to two-point functions respecting the de Sitter symmetries after analytical continuation

is still lacking. To perform that explicit calculation is one of the main goals of this paper.

The relation between the different approaches (Lorentzian, Euclidean, stochastic), has

been the subject of several works. For example, recently, it has been shown that the

stochastic and the in-in Lorentzian calculations are equivalent at the level of Feynman

rules for massive fields, when computing equal-time correlation functions in the leading IR

approximation [21], in agreement with previous arguments [22]. The evaluation of the field

variance in the large N limit gives the same result in the three approaches, up to next to

leading order (NLO) in 1/N , in the IR limit [15, 16]. The connection between the Feynman

diagrams for computing correlation functions in the in-in formalism and the analytically

continued ones obtained in the Euclidean space has been described in detail in [23, 24] for

massive fields. Similar arguments have been used in [25] to generalize the connection to

the massless case when the zero mode is treated nonperturbatively as proposed in [19].

In the latter case, the inhomogeneous IR behavior of the the correlation functions is still

unclear (they could grow at large distances [25]), and to understand this it is necessary to

go beyond the leading IR approximation. It is worth to highlight that beyond the leading

IR approximation a comparison of the results obtained by different approaches necessary

requires the use of equivalent regularization methods and renormalization schemes.

In this paper we will pursue the approach of ref. [20], providing a generalization to the

case of O(N) scalar field theory, and including a discussion of the renormalization process.

We will present a detailed calculation of the corrections to the two-point functions up to

second order in the parameter
√
λ. As we will see, the zero mode part of the two-point

functions, that also receives UV corrections, determines the quadratic part of the effective

potential. Being positive for all values of d and N , it implies that spontaneous symmetry

breaking does not occur in the O(N) models for λ� 1. We will check that, in the leading

large N limit, the Euclidean results are fully consistent with the Lorentzian ones, even

beyond the leading IR approximation. We will also show that the corrections of order

1/N of our result coincide in the leading IR approximation with the ones of refs. [15, 16],

which are the most precise results known so far for this model and were obtained working

in the leading IR approximation and directly in the framework of the QFT in Lorentzian

spacetime. Our results improve on those by including systematically the corrections coming

from the interactions of both IR and UV sectors.

The paper is organized as follows. In section 2 we present our model and describe

the systematic perturbative calculation of ref. [20]. We compute the homogeneous part

of the two-point functions, related to the quadratic part of the effective potential, in the

leading IR approximation (i.e. neglecting the contributions coming from the UV modes). In

section 3 we evaluate the full two-point functions of the theory, up to corrections of second

– 3 –
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order from the interaction with the UV modes, including the counterterms needed for

renormalization. We find out that, although this framework deals with the IR divergences

by giving a dynamical mass to the zero modes, the behavior of the two-point functions

at large distances still has IR problems for massless fields. In section 4 we analyze in

detail the massless case. We perform a large N expansion of the results of section 3 and

compare the Euclidean and Lorentzian results. Section 5 is concerned with an extension of

the nonperturbative treatment to perform a resummation of the leading IR secular terms,

in order to recover the proper decay of the two-point functions at large distances. This

resummation is combined with a systematic expansion both in
√
λ and 1/N . Finally, in

section 6 we describe the main conclusions of our work. Several appendices contain some

details of the calculations.

2 Euclidean de Sitter space

In this section we describe the methods of QFT in the Euclidean de Sitter space developed

in [19] and [20] and generalize them for the case of a O(N)-symmetric model with Euclidean

action

S =

∫
ddx
√
g

[
1

2
φa
(
−� +m2

)
φa +

λ

8N
(φaφa)

2

]
, (2.1)

where � = 1√
g∂µ

(√
ggµν∂ν

)
, φa denotes the components of an element of the adjoint

representation of the O(N) group, with a = 1, . . . , N , and the sum over repeated indices

is implied. Also, a possible nonminimal coupling with the curvature ξ is included in the

mass parameter m2 = m̃2 + ξd(d− 1)H2. In d dimensions the field coupling constant has

units of H4−d, thus can be expressed as λ = µ4−dλ4, with λ4 a dimensionless constant and

µ a scale with mass dimensions.

Euclidean de Sitter space is obtained from Lorentzian de Sitter space in global coordi-

nates by performing an analytical continuation t→ −i(τ − π/2H) and a compactification

in imaginary time τ = τ +2πH−1. The resulting metric is that of a d-sphere of radius H−1

ds2 = H−2
[
dθ2 + sin(θ)2dΩ2

]
, (2.2)

where θ = Hτ . Due to the symmetries and compactness of this space, the field can be

expanded in d-dimensional spherical harmonics

φa(x) =
∑
~L

φ~L,aY~L(x), (2.3)

and then the free scalar propagator of mass m is, in the symmetric phase,

G
(m)
ab (x, x′) = δabG

(m)(x, x′) = δabH
d
∑
~L

Y~L(x)Y ∗~L
(x′)

H2L(L+ d− 1) +m2
, (2.4)

where the superscript indicates the mass. The ~L = ~0 contribution G
(m)
0 = |Y~0|

2Hd/m2 is

clearly responsible for the infrared divergence in the correlation functions of the scalar field

for m2 → 0. We split φa(x) = φ0a + φ̂a(x) in order to treat the constant zero modes φ0a

– 4 –
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separately from the inhomogeneous parts φ̂a(x). This prompts to separate the propagator

as well,

G(m)(x, x′) = G
(m)
0 + Ĝ(m)(x, x′), (2.5)

where now Ĝ(m) has the property of being finite in the infrared (m2 → 0).

The interaction part of the action takes the following form:

Sint =
λVd
8N
|φ0|4 + S̃int[φ0a, φ̂a]. (2.6)

Here |φ0|2 = φ0aφ0a and Vd is the total volume of Euclidean de Sitter space in d-dimensions,

which thanks to the compactification is finite and equal to the hypersurface area of a d-

sphere

Vd =

∫
ddx
√
g =

2π
d+1
2

Γ
(
d+1

2

)
Hd

=
1

|Y~0|2Hd
, (2.7)

where Γ is Euler’s Gamma function. The explicit form of S̃int will be written below.

In order to compute the quantum correlation functions of the theory we define the

generating functional in the presence of sources J0a and Ĵa,

Z[J0, Ĵ ] = N
∫
dNφ0

∫
Dφ̂ e−S−

∫
x(J0aφ0a+Ĵaφ̂a)

= exp

(
−S̃int

[
δ

δJ0
,
δ

δĴ

])
Z0[J0]Ẑf [Ĵ ], (2.8)

where we introduced the shorthand notation
∫
x =

∫
ddx
√
g. Also, in the second line Z0[J0]

is defined as the generating functional of the theory with the zero modes alone. This part

gives the leading infrared contribution and can be exactly computed in several interesting

cases following ref. [19]. Note that, as the zero modes are constant on the sphere, their

kinetic terms vanish, and Z0[J0] involves only ordinary integrals.

The effective potential gives valuable information about how the quantum fluctuations

around a background field φ̄ influence its behavior. We are interested in particular in the

generation of a dynamical mass due to quantum effects. Up to quadratic order it can be

shown that (see appendix A),

Veff(φ̄0) = V0 +
1

2

N

Vd〈φ2
0〉
|φ̄0|2 +O(|φ̄0|4). (2.9)

This is an exact property of the Euclidean theory valid for all N and λ, which shows that

the dynamical mass is related to the inverse of the variance of the zero modes as

m2
dyn =

N

Vd〈φ2
0〉
. (2.10)

At the leading infrared order the interaction between the infrared and ultraviolet modes

in eq. (2.8) can be neglected, and

〈φ2
0〉0 = δab

δ2Z0[J0]

δJ0aδJ0b

∣∣∣∣∣
J0=0

=

∫
dNφ0 φ

2
0e
−Vd

[
λ
8N

φ40+m2

2
φ20

]
∫
dNφ0 e

−Vd
[
λ
8N

φ40+m2

2
φ20

] . (2.11)
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For a vanishing tree level mass m = 0, the integrals on the right-hand side can be computed

exactly leading to a dynamical mass,

m2
dyn,0 =

√
Nλ

2Vd

1

2

Γ
[
N
4

]
Γ
[
N+2

4

] . (2.12)

For N = 1, we recover the result of [19], which is also the one from the stochastic ap-

proach [4, 5],

m2
dyn,0

∣∣∣∣∣
N=1

=

√
3λ4H

2

8π

Γ
[

1
4

]
Γ
[

3
4

] , (2.13)

where we evaluated in d = 4, V4 = 8π2/3H4.

In the following section, we will compute the two-point functions of the full scalar field

including up to the second perturbative correction coming from the UV modes.

3 Corrections from the UV modes to the two-point functions

Corrections to the leading order result come from expanding the exponential with S̃int in

eq. (2.8). The explicit expression for the interaction part of the action that involves the

UV modes is

S̃int =
λ

8N

∫
ddx
√
g

[
2Aabcdφ0aφ0bφ̂cφ̂d + 4δabδcdφ0aφ̂bφ̂cφ̂d + δabδcdφ̂aφ̂bφ̂cφ̂d

]
, (3.1)

where Aabcd is the totally symmetric 4-rank tensor

Aabcd = δabδcd + δacδbd + δadδbc. (3.2)

The terms linear in φ̂ that would appear when splitting both the mass and the interaction

terms vanish, since
∫
ddx
√
gY~L(x) = 0 for L > 0.

As a guiding principle for computing the perturbative corrections in this section, we

recall that for a massless minimally coupled field, 〈φ2p
0 〉0 ∼ λ−p/2 (see eqs. (2.10) and (2.12),

and eq. (4.1) below), and therefore we will have a perturbative expansion in powers of
√
λ

(in contrast, the correlation functions of the zero modes start at λ0 when m 6= 0, and

therefore the order at which each perturbative term contributes changes with respect to

the massless case). With this in mind, here we will keep terms that will be at most of order

λ when m = 0.

The first correction to the generating functional comes from expanding the exponential

linearly and keeping the first term of eq. (3.1). Following the standard procedure, the

generating functional at NLO reads

Z[J0, Ĵ ] = Z0[J0]Ẑf [Ĵ ]− λ

4N
Aabcd

δ2Z0[J0]

δJ0aδJ0b

∫
ddx
√
g

δ2Ẑf [Ĵ ]

δĴc(x)δĴd(x)
. (3.3)

The next to NLO (NNLO) correction has two contributions. The first one is given

by the square of the interaction term considered before, as it comes from expanding the

– 6 –
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exponential up to quadratic order. The second one is the last term in eq. (3.1) at linear

order. These NNLO contributions to the generating functional are given by

+
1

2

λ2

16N2
AabcdAefgh

δ4Z0[J0]

δJ0aδJ0bδJ0eδJ0f

∫
ddx
√
g

∫
ddx′

√
g′

δ4Ẑf [Ĵ ]

δĴ4
cdgh(x, x, x′, x′)

, (3.4)

and

− λ

8N
Z0[J0]δabδcd

∫
ddx
√
g

δ4Ẑf [Ĵ ]

δĴ4
abcd(x, x, x, x)

, (3.5)

respectively. Here, and in what follows, we use the notation

δĴka1...ak(x1, . . . , xk) = δĴa1(x1) . . . δĴak(xk)

as a shorthand in the functional derivatives.

We split the two-point functions of the total fields φa into UV and IR parts

〈φa(x)φb(x
′)〉 = 〈φ0aφ0b〉+ 〈φ̂a(x)φ̂b(x

′)〉 , (3.6)

where the cross-terms vanish by orthogonality. In what follows we compute each part

separately.

3.1 UV part of the two-point functions

Starting with the UV part, we calculate the two point functions of φ̂a by taking two

functional derivatives of Z[J0, Ĵ ] with respect to Ĵa(x),

〈φ̂a(x)φ̂b(x
′)〉 =

1

Z[0, 0]

δ2Z[J0, Ĵ ]

δĴa(x)δĴb(x′)

∣∣∣∣∣
J0,Ĵ=0

(3.7)

where the factor Z[0, 0]−1 takes care of the normalization of the interacting theory:

Z[0, 0]−1 = 1 +
λ

4N
(N + 2)〈φ2

0〉0Vd[Ĝ(m)] +
λ

8
(N + 2)Vd[Ĝ

(m)]2

+
λ2

16N2
(N + 2)2〈φ2

0〉20V 2
d [Ĝ(m)]2

−λ
2〈φ4

0〉0
32N2

[
(N + 2)2V 2

d [Ĝ(m)]2 + 2(N + 8)

∫∫
x,x′

Ĝ(m)(x, x′)2

]
. (3.8)

Here [Ĝ(m)] denotes the coincidence limit of the free UV propagator with mass m, which is

independent of x by de Sitter invariance, and we used Aabcdδcd = (N + 2)δab. Furthermore,

to arrive at this expression we have used eqs. (B.1) and (B.2) to write the derivatives of

Ẑf [Ĵ ] in terms of free propagators, relying on the fact that it is a free generating functional.

On the other hand, for the derivatives of Z0[J0], we have

δ2Z0[J0]

δJ0aδJ0b

∣∣∣∣∣
J0=0

= 〈φ0aφ0b〉0 = δab
〈φ2

0〉0
N

, (3.9)

δ4Z0[J0]

δJ0aδJ0bδJ0cδJ0d

∣∣∣∣∣
J0=0

= Aabcd
〈φ4

0〉0
N(N + 2)

, (3.10)

– 7 –
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with 〈φ0aφ0b〉0 the exact two-point functions of the zero modes in the absence of the UV

modes. By exact we mean that we include the self-interaction nonperturbatively. For

convenience, in the last equality of eq. (3.9) we expressed the result in terms of its trace

with respect to the internal O(N) indices. In general, any of the traced exact n-point

functions of zero modes at leading order can be expressed in terms of ordinary integrals.

For even n = 2p we have

〈φ2p
0 〉0 =

∫
dNφ0 φ

2p
0 e
−Vd

[
λ
8N

φ40+m2

2
φ20

]
∫
dNφ0 e

−Vd
[
λ
8N

φ40+m2

2
φ20

] , (3.11)

while they vanish for odd n.

To evaluate the second derivative of Z[J0, Ĵ ], we can set J0 = 0 in eq. (3.7) and

compute

δ2Z[0,Ĵ ]

δĴa(x)δĴb(x′)

∣∣∣∣∣
Ĵ=0

=
δ2Ẑf [Ĵ ]

δĴa(x)δĴb(x′)

∣∣∣∣∣
Ĵ=0

− λ

4N
(N + 2)〈φ2

0〉0
∫
z

δ4Ẑf [Ĵ ]

δĴ4
abcd(x,x

′,z,z)

∣∣∣∣∣
Ĵ=0

+
λ2〈φ4

0〉0
32N3

[
(N + 4)δcdδef + 4

Acdef
(N + 2)

]∫∫
y,z

δ6Ẑf [Ĵ ]

δĴ6
abcdef (x,x′,y,y,z,z)

∣∣∣∣∣
Ĵ=0

− λ

8N
δcdδef

∫
z

δ6Ẑf [Ĵ ]

δĴ6
abcdef (x,x′,z,z,z,z)

∣∣∣∣∣
Ĵ=0

. (3.12)

Once again we make use of eqs. (B.1), (B.2) and similar expressions in eqs. (B.3) and (B.4)

to replace the derivatives of Ẑf [Ĵ ] in eq. (3.12). Then we multiply by the normalization

factor in eq. (3.8). The result is:

〈φ̂a(x)φ̂b(x
′)〉 = δab

{
Ĝ(m)(x, x′) +

[
−λ(N + 2)

2N2
〈φ2

0〉0 −
λ

2N
(N + 2)[Ĝ(m)]

+
λ2

8N3
(N + 2)2Vd[Ĝ

(m)]
(
〈φ4

0〉0 − 〈φ2
0〉20
)] ∫

z
Ĝ(m)(x, z)Ĝ(m)(z, x′)

+
λ2

4N3
(N + 8)〈φ4

0〉0
∫
y,z
Ĝ(m)(x, y)Ĝ(m)(y, z)Ĝ(m)(z, x′)

}
. (3.13)

Eq. (3.13) needs the inclusion of counterterms to renormalize the divergences present

in [Ĝ(m)]. The details of this process are given in the appendix C. Splitting

[Ĝ(m)] = [Ĝ(m)]div + [Ĝ(m)]ren, (3.14)

it can be seen that eq. (3.13) can be made finite by a mass counterterm of the form

δm2 = − λ

2N
(N + 2)[Ĝ(m)]div. (3.15)

The expression for the UV part of the propagator can be simplified considerably using

that the integrals of free UV propagators in Euclidean space in eq. (3.13) can be expressed

– 8 –
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in terms of derivatives of a single propagator with respect to its mass. This is shown in

the appendix D: ∫
z
Ĝ(m)(x, z)Ĝ(m)(z, x′) = −∂Ĝ

(m)(x, x′)

∂m2
, (3.16)∫∫

y,z
Ĝ(m)(x, y)Ĝ(m)(y, z)Ĝ(m)(z, x′) =

1

2

∂2Ĝ(m)(x, x′)

∂(m2)2
, (3.17)

and thus eq. (3.13) reads, after renormalization,

〈φ̂a(x)φ̂b(x
′)〉 = δab

{
Ĝ(m)(x, x′) +

[
λ(N + 2)

2N2
〈φ2

0〉0 +
λ

2N
(N + 2)[Ĝ(m)]ren

− λ2

8N3
(N + 2)2Vd[Ĝ

(m)]ren

(
〈φ4

0〉0 − 〈φ2
0〉20
)]∂Ĝ(m)(x, x′)

∂m2

+
λ2

8N3
(N + 8)〈φ4

0〉0
∂2Ĝ(m)(x, x′)

∂(m2)2

}
. (3.18)

Näıvely, this result looks like a Taylor expansion of a free UV propagator with respect to

the mass squared, around the mass parameter m2. However, as we will see later, while this

is indeed the case in the large-N limit, it does not hold anymore when the 1/N corrections

are included.

3.2 IR part of the two-point functions

We now calculate the IR part of the two-point functions by taking two derivatives of the

generating functional Z[J0, Ĵ ] with respect to J0,

〈φ0aφ0b〉 =
1

Z[0, 0]

δ2Z[J0, Ĵ ]

δJ0aδJ0b

∣∣∣∣∣
J0,Ĵ=0

. (3.19)

It is useful to first set Ĵ = 0 and take the derivatives afterwards:

δ2Z[J0, Ĵ ]

δJ0aδJ0b

∣∣∣∣∣
J0,Ĵ=0

=
δab
N

{
〈φ2

0〉0
[
1− λ

8
(N + 2)Vd[Ĝ

(m)]2
]
− λ

4N
(N + 2)〈φ4

0〉0Vd[Ĝ(m)]

+
λ2

32N2
〈φ6

0〉0

[
(N + 2)2V 2

d [Ĝ(m)]2 + 2(N + 8)

∫∫
x,x′

Ĝ(m)(x, x′)2

]}
,

(3.20)

where we made use of eqs. (3.9) and (3.10), and that

δcdδef
δ6Z0[J0]

δJ0aδJ0bδJ0cδJ0dδJ0eδJ0f

∣∣∣∣∣
J0=0

= δab
〈φ6

0〉0
N

. (3.21)
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In the last term of eq. (3.20) we can make the replacement
∫
x′ Ĝ

(m)(x, x′)2 = −∂[Ĝ(m)]/∂m2

by virtue of eq. (3.16). This shows that this expression has, besides [Ĝ(m)], another diver-

gent quantity ∂[Ĝ(m)]/∂m2. We split the latter as before

∂[Ĝ(m)]

∂m2
=

(
∂[Ĝ(m)]

∂m2

)
div

+

(
∂[Ĝ(m)]

∂m2

)
fin

, (3.22)

and following the details of the appendix C we obtain the renormalized expression. The

renormalization involves a new counterterm to compensate for this divergence, namely

δλ = − λ2

2N
(N + 8)

(
∂[Ĝ(m)]

∂m2

)
div

. (3.23)

Finally, we can write down the renormalized two-point functions for the zero modes

〈φ0aφ0b〉 = δab

{
〈φ2

0〉0
N

+
λ

4N2
(N + 2)

[
〈φ2

0〉20 − 〈φ4
0〉0
]
Vd[Ĝ

(m)]ren

+
λ2

32N3
(N + 2)2

[
〈φ6

0〉0 − 3〈φ2
0〉0〈φ4

0〉0 + 2〈φ2
0〉30
]
V 2
d [Ĝ(m)]2ren

− λ2

16N3
(N + 8)

[
〈φ6

0〉0 − 〈φ2
0〉0〈φ4

0〉0
]
Vd

(
∂[Ĝ(m)]

∂m2

)
fin

}

=
δab

Vdm
2
dyn(IR)

. (3.24)

The last equality follows after interpreting the corrections as a modification to the mass

m2
dyn(IR) of the zero modes which, as mentioned before, determines the curvature of the

effective potential.

Eqs. (3.18) and (3.24) are the main results of this section. They contain the main

corrections to the renormalized UV and IR propagators, for any values of d and N .

4 Massless fields

A case of great interest is when the fields are massless at tree level, m = 0, as it is in

this case in which the perturbative treatment becomes ill-defined. The nonperturbative

treatment of the zero modes ensures that these modes acquire a dynamical mass, avoiding

the IR divergence associated to the free two-point functions in the massless limit. This

can be verified by checking that eq. (3.24) remains finite in this limit. Indeed, the n-point

functions of the zero modes can be exactly computed to be

〈φ2p
0 〉0 =

∫∞
0 dφ0 φ

N−1+2p
0 e−

Vdλ

8N
φ40∫∞

0 dφ0 φ
N−1
0 e−

Vdλ

8N
φ40

= 2
3p
2

(
N

Vdλ

) p
2 Γ
[
N+2p

4

]
Γ
[
N
4

] , (4.1)

which exhibit no IR divergences. This equation shows a scaling of the form φ0 ∼ λ−1/4,

making the perturbative expansion of the UV modes to be in powers of
√
λ.
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It is worth to note that, when considering the two-point functions of the UV modes,

eq. (3.18), the free UV propagators that build up this expression will now become massless.

After performing the analytical continuation to the Lorentzian spacetime, this leads to an

IR enhanced behavior at large distances, i.e. secular growth (see appendix E). The reason

for this is that so far we have only given mass to the zero modes, while the UV modes

remain massless, as sketched diagramatically in appendix F. This situation can be dealt

with by improving the result eq. (3.18) by further resumming a given subset of diagrams

that give mass to the UV propagators appearing in that expression. We will focus on this

point in section 5.

4.1 The 1/N expansion

In Euclidean de Sitter space, after dealing with the zero modes, the calculations of the n-

point functions can be done by means of a perturbative expansion in powers of
√
λ. When

λ is sufficiently small, being a compact space, this perturbative expansion is valid for any

set of points and for any value of N . So an expansion in 1/N is certainly unnecessary in

that case. However, we are ultimately interested in computing quantities in the Lorentzian

de Sitter spacetime. For this, as will become clear in the next section, a double expansion

in
√
λ and 1/N turns out to be crucially convenient in order to obtain a tractable pertur-

bative expansion that remains valid at large distances. With this in mind, we perform an

expansion in 1/N of the results obtained in the previous section. In order to compare with

known results appearing in the literature, it is sufficient to remain at NLO in 1/N . At the

same time, the known Lorentzian results that are nonperturbative in the coupling constant

will have to be expanded in powers of
√
λ to bring them to the same precision.

The Euclidean results for the two-point functions at order λ and order 1/N are obtained

by inserting eq. (4.1) into eqs. (3.18) and (3.24), and then expanding in powers of 1/N .

We arrive at the following expressions:

〈φ̂a(x)φ̂b(x
′)〉 = δab

{
Ĝ(0)(x, x′) +

(√
λ

2Vd
+
λ

4
[Ĝ(0)]ren

)
∂Ĝ(m)(x, x′)

∂m2

∣∣∣∣∣
0

+
1

2

λ

2Vd

∂2Ĝ(m)(x, x′)

∂(m2)2

∣∣∣∣∣
0

+
1

2N

[(
3

√
λ

2Vd
+
λ

4
[Ĝ(0)]ren

)
∂Ĝ(m)(x, x′)

∂m2

∣∣∣∣∣
0

+
4λ

Vd

∂2Ĝ(m)(x, x′)

∂(m2)2

∣∣∣∣∣
0

]}
, (4.2)

and

〈φ0aφ0b〉 = δab

{√
2

Vdλ
− 1

2
[Ĝ(0)]ren +

1

8

√
Vdλ

2
[Ĝ(0)]2ren −

1

2

√
λ

2Vd

(
∂[Ĝ(m)]

∂m2

)
0,fin

+
1

2N

[
−
√

2

Vdλ
− 3

2
[Ĝ(0)]ren +

9

8

√
Vdλ

2
[Ĝ(0)]2ren +

15

2

√
λ

2Vd

(
∂[Ĝ(m)]

∂m2

)
0,fin

]}
,

(4.3)
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for the UV and IR contributions, respectively. It is worth to stress that the leading contri-

bution in the limit N →∞ of eq. (4.2) is compatible with a Taylor expansion of a massive

UV propagator, with an UV dynamical mass given by

m2
dyn(UV) =

√
λ

2Vd
+
λ

4
[Ĝ(0)]ren, (4.4)

up to order λ. Furthermore, the IR dynamical mass m2
dyn(IR) read from eq. (4.3) also

coincides up to that order with m2
dyn(UV), and therefore the whole propagator can be

interpreted as a free de Sitter propagator with a dynamical mass m2
dyn. Beyond the LO

contribution in 1/N , this is not true, since in eq. (4.2) the coefficient of the second derivative

is no longer half the square of that of the first derivative, and the two-point functions has

a more complicated structure.

4.2 Comparison with Lorentzian QFT: dynamical mass

There are several nonperturbative approaches in the Lorentzian QFT. Here we consider

the 2PIEA formulation, in which both the mean value of the field φ̄(x) and the exact two-

point functions G(mdyn)(x, x′) are treated as independent degrees of freedom. A detailed

description of this method is given elsewhere. In this framework it is possible to obtain the

exact result for the two-point functions in the large-N limit. For this, we follow [8, 9, 26]

and write down the exact equations of motion in the large-N limit,[
−� +m2 +

λ

2
φ̄2 +

λ

2
[G(mdyn)]

]
φ̄ = 0, (4.5)

[
−� +m2 +

λ

2
φ̄2 +

λ

2
[G(mdyn)]

]
G(mdyn)(x, x′) = i

δ(x− x′)√
−g

. (4.6)

In this limit, the equations become local. Eq. (4.6) corresponds to that of a free propagator

in de Sitter spacetime with mass m2
dyn satisfying a self-consistent gap equation,

m2
dyn = m2 + δm2 +

(λ+ δλ)

2
φ̄2 +

(λ+ δλ)

2
[G(mdyn)], (4.7)

where the counterterms have to be suitably chosen to cancel the divergences of the co-

incidence limit of the propagator in the right hand side. We expand [G(mdyn)] in powers

of m2
dyn,

[G(mdyn)] =
1

Vdm
2
dyn

+ [Ĝ(0)] +m2
dyn

(
∂[Ĝ(m)]

∂m2

)
0

+ . . . (4.8)

where the dots stand for terms of order O(m4
dyn/H

4) and can be neglected since we are

interested in the small mass case m2
dyn � H2. We take advantage of the fact that the

coincident propagator is exactly the same for both the Lorentzian and Euclidean theories.

Therefore we use the same notation as for our Euclidean calculations for the different parts
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in the expansion. The necessary counterterms are

δm2 = −λ
2

 [Ĝ(0)]div +m2
(
∂[Ĝ(m)]
∂m2

)
0,div

1 + λ
2

(
∂[Ĝ(m)]
∂m2

)
0,div

 , (4.9)

δλ = −
λ2

2

(
∂[Ĝ(m)]
∂m2

)
0,div[

1 + λ
2

(
∂[Ĝ(m)]
∂m2

)
0,div

] . (4.10)

When expanded at the leading order in λ, these counterterms coincide with those used in

the Euclidean calculation, eqs. (3.15) and (3.23), when the latter are expanded for small

masses and the large-N limit is taken. The renormalized gap equation is then, in the

symmetric phase φ̄ = 0:

m2
dyn = m2 +

λ

2

[
1

Vdm
2
dyn

+ [Ĝ(0)]ren +m2
dyn

(
∂[Ĝ(m)]

∂m2

)
0,fin

]
. (4.11)

This is a quadratic algebraic equation for m2
dyn, whose positive and physically relevant

solution is

m2
dyn =

−b+
√
b2 + 2λ

Vd
a

2a
, (4.12)

where we have defined

a = 1− λ

2

(
∂[Ĝ(m)]

∂m2

)
0,fin

, (4.13)

b = m2 +
λ

2
[Ĝ(0)]ren. (4.14)

The dynamical mass is finite for m = 0, and exact in the large-N limit.

In order to draw a comparison with the Euclidean results, we expand the Lorentzian

expression up to order
√
λ,

1

Vdm
2
dyn

=

√
2

Vdλ
− 1

2
[Ĝ(0)]ren +

1

8

√
Vdλ

2
[Ĝ(0)]2ren −

1

2

√
λ

2Vd

(
∂[Ĝ(m)]

∂m2

)
0,fin

. (4.15)

The corresponding Euclidean calculation is given in eq. (4.3). We see that, at leading order

in 1/N , the dynamical masses computed in both approaches coincide.

When going beyond the leading order in 1/N , the previous approach is no longer

valid, since the propagator cannot be described as a free propagator with a dynamical

mass given by the gap equation, eq. (4.6), and the full Schwinger-Dyson equations must

be solved instead. The complete Lorentzian results that take into account the UV modes

and the renormalization process are technically involved and still unknown. However, in

refs. [15, 16] the authors were able to obtain results up to the NLO in the 1/N expansion

which are valid at the leading order in the IR. We refer the reader to their paper for
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the details. Basically, exploiting the de Sitter symmetries, the scalar fields are split into

two sectors: an IR one, formed by modes with physical momenta smaller than a critical

scale µIR � H, and the one containing the remaining modes. The interactions of the IR

modes are taken into account, but the ones of the remaining modes are neglected. In this

approximation, the authors have obtained a self-consistent solution of the Schwinger-Dyson

equations for the IR two-point functions that is valid at NLO in 1/N and at leading order

in the IR. In particular, the result for the dynamical mass can be written as [15, 16]:

1

Vdm
2
dyn

=

√
2

Vdλ

(
1− 1

2N

)
+ . . . , (4.16)

where the dots stand for corrections that are higher order in either
√
λ or 1/N (which

cannot be unambiguously computed in the approximation considered, since they depend

on the arbitrary IR scale µIR). Clearly, this result agrees with our eq. (4.3) at leading order

in
√
λ.

5 Resumming the leading IR secular terms to the two-point functions

In section 4 we discussed the case of massless fields and took notice that the calculated

two-point functions of the UV modes, given in eq. (3.18), would be expressed in terms of

massless UV propagators. The problem is then that the analytically continued correlation

function does not decay at large distances, as happens for massive fields. The reason for

this being that the UV modes remained massless in this framework.

In this section we will extend the nonperturbative treatment, with the aim of re-

summing the leading IR secular terms. In order to achieve this, we need to perform a

resummation of diagrams to give mass to the UV propagators present in eq. (3.18). As we

will see, it will be enough to resum only a subclass of diagrams: those coming from the

interaction term that is quadratic in both φ0 and φ̂,

S
(2)
int [φ0, φ̂] =

λ

4N

∫
ddx
√
g Aabcdφ0aφ0bφ̂cφ̂d, (5.1)

which will be treated nonperturbatively, while still perturbing on the remaining terms.

We start by rewritting the generating functional eq. (2.8) by grouping this term with

the other terms quadratic in φ̂, as part of the “free” generating functional of the UV modes,

Z[J0, Ĵ ] = N e−
˜̃Sint

[
δ
δJ0

, δ
δĴ

] ∫
dNφ0 e

−
[
λVd
8N
|φ0|4+VdJ0aφ0a

]

×
∫
Dφ̂ exp

(
−1

2

∫∫
x,y
φ̂aĜ

−1
ab (φ0)φ̂b +

∫
x
Ĵaφ̂a

)
= N e−

˜̃Sint

[
δ
δJ0

, δ
δĴ

](
Ẑf

[
Ĵ ,m2

] [
det Ĝ(m)

rs

]1/2
)
m(δ/δJ0)

Z0[J0], (5.2)

where now the “free” UV propagator Ĝab(φ0) has a φ0-dependent mass,

Ĝ−1
ab (φ0)(x, x′) =

[
−�δab +m2

ab(φ0)
] δ(d)(x− x′)

√
g

, (5.3)
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with m2
ab(φ0) = (λ/2N)Aabcdφ0cφ0d and where ˜̃Sint = S̃int − S(2)

int has the remaining inter-

action terms that should be treated perturbatively. The normalization factor N ensures

that Z[0, 0] = 1.

In order to compare with the results of the previous sections, it will be enough to keep

terms up to order λ. Therefore, it is necessary to include perturbatively only the first

correction coming from the term,

S
(4)
int [φ̂] =

λ

8N

∫
x
|φ̂|4, (5.4)

and so the generating functional reduces to

Z(1)[J0, Ĵ ] =

[
1− λ

8N
δcdδef

∫
x

δ4

δĴ4
cdef (x)

](
Ẑf

[
Ĵ ,m2

] [
det Ĝ(m)

rs

]1/2
)
m
(

δ
δJ0

) Z0[J0].

(5.5)

Now we proceed to calculate the connected two-point functions of the UV modes,

〈φ̂a(x)φ̂b(x
′)〉(1) =

1

Z(1)[0, 0]

δ2Z(1)[J0, Ĵ ]

δĴa(x)δĴb(x′)

∣∣∣∣∣
J0,Ĵ=0

(5.6)

= 〈φ̂a(x)φ̂b(x
′)〉(0) + ∆〈φ̂a(x)φ̂b(x

′)〉,

which we split in two contributions, according to the interaction term that we are treating

perturbatively. Approximating Z(1) in eq. (5.6) by the first term of eq. (5.5) we obtain for

the first contribution

〈φ̂a(x)φ̂b(x
′)〉(0) =

(
Ĝ

(m)
ab (x, x′)

[
det Ĝ

(m)
rs

]1/2
)
m
(

δ
δJ0

) Z0[J0]

∣∣∣∣∣∣
J0=0[

det Ĝ
(m(δ/δJ0))
rs

]1/2
Z0[J0]

∣∣∣
J0=0

. (5.7)

Here it is important to note that both square roots of the determinant of the propagator will

not cancel each other out due to the integral over φ0. This is crucial to obtain the correct

result. In order to evaluate this formal expression, we must expand both the numerator

and the denominator in powers of m2
ab(δ/δJ0). We start with the numerator:

∞∑
p=0

1

p!

∂p
(
Ĝ

(m)
ab (x, x′)

[
det Ĝ

(m)
rs

]1/2
)

∂m2
i1j1

. . . ∂m2
ipjp

∣∣∣∣∣∣∣∣
0

(
p∏

α=1

λ

2N
Aiαjαkαlα

)
δ2pZ0[J0]

δJ0k1δJ0l1 . . . δJ0kpδJ0lp

∣∣∣∣∣
J0=0

.

(5.8)

The key point is that our resummation needs only include the (infinite) subset of contri-

butions that modify the UV propagator at separate points, while the determinant of Ĝab
has no IR problems and can be safely evaluated at m = 0. Therefore, in the above series

it is enough to consider only terms with as many derivatives acting on the determinant as
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needed for a given precision in λ, since each time we increase the number of those deriva-

tives we pick up a factor of λφ2
0 ∼
√
λ. In our case, we shall keep terms with zero and one

derivatives of the determinant.

If first we consider the subset of terms with no derivatives of the determinant, we have

a series for the connected UV propagator,[
det Ĝ(0)

rs

]1/2
∞∑
p=0

1

p!

∂pĜ
(m)
ab (x, x′)

∂m2
i1j1

. . . ∂m2
ipjp

∣∣∣∣∣
0

(
p∏

α=1

λ

2N
Aiαjαkαlα

)
〈φ0k1φ0l1 . . . φ0kpφ0lp〉0. (5.9)

We see that each term of the series corresponds to a connected diagram with p insertions

of (λ/2N)Aijklφ0jφ0k and two external legs, as shown in figure 1. The contractions of

the O(N) indices amount to an overall δab and a factor depending both on N and p. To

calculate this factor, we recall that each Aijkl has 3 terms made of pairs of Kronecker

deltas, so for each p there will be 3p terms. Of these, one term will be proportional to

δab〈φ2p
0 〉0, (5.10)

while the other 3p − 1 terms will leave two powers of φ0 untraced,

〈φ0aφ0b φ
2(p−1)
0 〉0 =

δab
N
〈φ2p

0 〉0. (5.11)

Therefore, the series in eq. (5.9) becomes[
det Ĝ(0)

rs

]1/2
δab

∞∑
p=0

1

p!

∂pĜ(m)(x, x′)

∂(m2)p

∣∣∣∣∣
0

(
λ

2N

)p [
1 +

(3p − 1)

N

]
〈φ2p

0 〉. (5.12)

This series can be resummed order by order in 1/N , as we will see in the next section.

Before doing this, let us first deal with the other subset of terms that we need to consider

up to order λ1, namely, those in which there is one derivative acting on the determinant,

∂
[
detĜ

(m)
rs

]1/2

∂m2
ij

∣∣∣∣∣∣∣
0

λ

2N
Aijkl (5.13)

×
∞∑
p=0

p

p!

∂p−1Ĝ
(m)
ab (x,x′)

∂m2
i1j1

...∂m2
ip−1jp−1

∣∣∣∣∣
0

(
p−1∏
α=1

λ

2N
Aiαjαkαlα

)
〈φ0kφ0lφ0k1φ0l1 ...φ0kp−1φ0lp−1〉0.

In this case the UV propagators in the diagrams are not all connected among themselves,

but rather through their interaction with the zero modes. Indeed, these diagrams are

composed of a single bubble with one insertion of (λ/2N)Aijklφ0jφ0k (factorized in the

previous expression) times a connected part with p− 1 insertions, as depicted in figure 2.

The prefactor is simply proportional to δkl, while the series now contains only connected

diagrams, and the same argument as before applies. Therefore, relabeling the summation

index p = l + 1, we obtain

∂
[
det Ĝ

(m)
rs

]1/2

∂m2

∣∣∣∣∣∣∣
0

λ(N + 2)

2N
δab

∞∑
l=0

1

l!

∂lĜ(m)(x, x′)

∂(m2)l

∣∣∣∣∣
0

(
λ

2N

)l [
1 +

(3l − 1)

N

]
〈φ2(l+1)

0 〉0.

(5.14)

– 16 –



J
H
E
P
0
9
(
2
0
1
6
)
1
1
7

〈φ2p

0
〉0

x x′

1 2
. . . p

Figure 1. This diagram represents a particular term in the series of eq. (5.9) with p insertions

of (λ/2N)Aijklφ0jφ0k. The solid lines stand for UV propagators Ĝ while the dashed lines repre-

sent φ0’s. The solid blob indicates a nonperturbative correlation function of zero modes obtained

from Z0[J0].

〈φ2p

0
〉0

x x′

1 2
. . .p− 1

Figure 2. Similar to figure 1 but in this case representing a term in the series of eq. (5.13) instead.

The loop of UV modes comes from the derivative of the determinant, and it is disconnected from

the other solid lines (although it is connected through the interactions with the zero modes).

Next we consider the denominator of eq. (5.7). As we discussed, there is no need to

resum the determinant since it has no external legs. Therefore we can treat it perturbatively

in λ. To be consistent with what we did with the numerator, we should keep the first two

terms, that is, with zero and one derivatives acting on the determinant,

1[
detĜ

(m(δ/δJ0))
rs

]1/2
Z0[J0]

∣∣∣
J0=0

=
1[

detĜ
(0)
rs

]1/2

1− λ(N + 2)

2N
〈φ2

0〉0

 ∂
[
detĜ

(0)
rs

]1/2
∂m2

N
[
detĜ

(0)
rs

]1/2




+O(λ). (5.15)

The combination in big parentheses can be easily computed (see appendix G) to give ∂
[
det Ĝ

(0)
rs

]1/2
∂m2

N
[
det Ĝ

(0)
rs

]1/2

 = −Vd
2

[Ĝ(0)], (5.16)

where, although there is a massless propagator, there are no infrared problems since it is

evaluated at its coincidence limit. To deal with the UV divergence, the renormalization can

be carried out by introducing (at this order) the mass counterterm δm2 given in eq. (3.15)

at m = 0, both in the action of the zero modes as well as for the UV modes. Then, when

performing the above mass expansions, the diagrams now can be constructed with both

lines with insertions of (λ/2N)Aijklφ0jφ0k and of δm2δij . As we did with the derivatives

of the determinant, we need only keep a finite number of δm2δij insertions, given that

δm2 ∼ λ. In our case, we need only one, but in general we will need as many as derivatives
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of the determinant we have. At higher orders in λ it is also necessary to include a δλ

counterterm.

Putting everything together, distributing, and keeping the terms up to the correspond-

ing order in λ, we arrive at

〈φ̂a(x)φ̂b(x
′)〉(0) = δab

{ ∞∑
p=0

1

p!

∂pĜ(m)(x,x′)

∂(m2)p

∣∣∣∣∣
0

(
λ

2N

)p[
1+

(3p−1)

N

]
〈φ2p

0 〉0 (5.17)

−λ
2(N+2)

4N
Vd[Ĝ

(0)]ren

×
∞∑
l=0

1

l!

∂lĜ(m)(x,x′)

∂(m2)l

∣∣∣∣∣
0

(
λ

2N

)l[
1+

(3l−1)

N

][
〈φ2(l+1)

0 〉0−〈φ2
0〉0〈φ2l

0 〉0
]}
.

Now we look at the remaining term coming form the perturbative correction,

∆〈φ̂a(x)φ̂b(x
′)〉 = δab

λ(N + 2)

2N

(
[Ĝ(m)]∂Ĝ

(m)(x,x′)
∂m2

[
det Ĝ

(m)
rs

]1/2
)
m
(

δ
δJ0

) Z0[J0]

∣∣∣∣∣∣
J0=0[

det Ĝ
(m(δ/δJ0))
rs

]1/2
Z0[J0]

∣∣∣∣
J0=0

.

(5.18)

Once again, we must expand this in powers of the mass in order to evaluate the J0-

derivatives acting on Z0[J0] an resum order by order in 1/N . As before, the only part

we should be concerned with resumming is the first derivative of the UV propagator at

separate points, while the other factors are well behaved for m = 0. The renormalization

of the coincidence limit comes from the inclusion of the δm2 counterterm.

In contrast with the previous calculation, we have no need to keep any terms with

derivatives of the determinant, since they would only contribute at higher orders in λ.

Then, keeping only the contributions with derivatives over ∂Ĝ(m)(x,x′)
∂m2 , we have

∆〈φ̂a(x)φ̂b(x
′)〉 = δab

λ(N + 2)

2N
[Ĝ(0)]ren (5.19)

×
∞∑
p=0

1

p!

∂p+1Ĝ(m)(x, x′)

∂(m2)p+1

∣∣∣∣∣
0

(
λ

2N

)p [
1 +

(3p − 1)

N

]
〈φ2p

0 〉,

where once again the counting of the N -dependent factor relies on the fact that each term

in the series corresponds to a connected diagram.

5.1 1/N expansion at NLO

As we mentioned, the series above can be resummed order by order in 1/N , for which we

need to expand the summands of the various series. Up to order N−1 we have(
λ

2N

)p [
1 +

(3p − 1)

N

]
〈φ2p

0 〉0 =

(√
λ

2Vd

)p [
1 +

p(p− 2) + 2(3p − 1)

2N
+O

(
1

N2

)]
,

(5.20)
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and

λ(N + 2)

2N

(
λ

2N

)p [
1 +

(3p − 1)

N

] [
〈φ2(p+1)

0 〉0 − 〈φ2
0〉0〈φ

2p
0 〉0

]
(5.21)

=

(√
λ

2Vd

)p+1

p

[
1 +

3 + 2× 3p + p(p− 3)

2N

]
.

Using the first of these we can resum the first Taylor series of eq. (5.17):

Ĝ(m)(x, x′)
∣∣∣
mdyn,0

+
1

2N

[
−m2∂Ĝ

(m)(x, x′)

∂m2
+m4∂

2Ĝ(m)(x, x′)

∂(m2)2

+2Ĝ(
√

3m)(x, x′)− 2Ĝ(m)(x, x′)

]
mdyn,0

+O
(

1

N2

)
, (5.22)

where m2
dyn,0 =

√
λ

2Vd
, and the second series:

m4
dyn,0

{
∂Ĝ(m)(x,x′)

∂m2
+

1

2N

[
∂Ĝ(m)(x,x′)

∂m2
+6

∂Ĝ(
√

3m)(x,x′)

∂m2

]
+O

(
1

N2

)}
mdyn,0

+O(λ3/2).

(5.23)

Inserting these expressions into eq. (5.17) we get,

〈φ̂a(x)φ̂b(x
′)〉(0) = δab

{
Ĝ(m)(x, x′)− λ

4
[Ĝ(0)]ren

∂Ĝ(m)(x, x′)

∂m2
(5.24)

+
1

2N

[
2Ĝ(

√
3m)(x, x′)− 2Ĝ(m)(x, x′)

−

√
λ

2Vd

∂Ĝ(m)(x, x′)

∂m2
+

λ

2Vd

∂2Ĝ(m)(x, x′)

∂(m2)2

−λ
4

[Ĝ(0)]ren

(
∂Ĝ(m)(x, x′)

∂m2
+ 6

∂Ĝ(
√

3m)(x, x′)

∂m2

)]}
mdyn,0

.

All the UV propagators at separated points now have a mass squared of order
√
λ, giving

them the correct behavior at large separations. A noteworthy observation is the presence

of some propagators whose squared mass is three times that of the others, something which

could not have been anticipated from the perturbative result. Also, the only instance of a

massless UV propagator in the previous expression has its coincidence limit taken, and it

is therefore just a finite constant factor with no IR issues.

Now we turn to the remaining part, eq. (5.19), where the series can be resummed as

done for eq. (5.17). However, since the contribution at NLO in 1/N is also higher order in

λ with respect to the LO one, we can just keep the latter,

∆〈φ̂a(x)φ̂b(x
′)〉 = δab

λ

2

(
1 +

2

N

)
[Ĝ(0)]ren

∂Ĝ(m2
dyn,0)(x, x′)

∂m2
. (5.25)
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The full result for the connected two-point functions of the UV modes up to order λ

and N−1, with a partial resummation of the infinite subset of diagrams, is obtained by

combining eqs. (5.24) and (5.25):

〈φ̂a(x)φ̂b(x
′)〉(1) = δab

{
Ĝ(m)(x, x′) +

λ

4
[Ĝ(0)]ren

∂Ĝ(m)(x, x′)

∂m2
(5.26)

+
1

2N

[
2Ĝ(

√
3m)(x, x′)− 2Ĝ(m)(x, x′)

−

√
λ

2Vd

∂Ĝ(m)(x, x′)

∂m2
+

λ

2Vd

∂2Ĝ(m)(x, x′)

∂(m2)2

+
λ

4
[Ĝ(0)]ren

(
7
∂Ĝ(m)(x, x′)

∂m2
− 6

∂Ĝ(
√

3m)(x, x′)

∂m2

)]}
mdyn,0

.

It was verified as a cross-check that this result reduces to the perturbative one eq. (3.18),

upon expanding the latter at NLO in 1/N (see appendix H).

The large distance behaviour of the two-point functions ultimately depends on the

masses of the free propagators that build up the expression, m2
dyn,0 and 3m2

dyn,0, which

determine how fast it decays. However, the true exponent could be other, the difference

lying beyond the precision of this result.

5.2 Comparison with Lorentzian QFT: two-point functions

The Lorentzian calculations of refs. [15, 16] for the two-point functions are expressed dif-

ferently, as a sum of two free (full) propagators,

〈φa(x)φb(x
′)〉 = δab

(
c+G

(m+)(x, x′) + c−G
(m−)(x, x′)

)
, (5.27)

with masses

m2
+ = m2

dyn,0

(
1 +

1

4N

)
, (5.28)

m2
− = 5m2

dyn,0

(
1 +

1

4N

)
, (5.29)

which are different to ours. The coefficients are given by c− = 5/16N and c+ + c− = 1.

Therefore, in order to draw a comparison between both results, they are better expressed

in terms of UV propagators and its derivatives around a common mass parameter, which

we choose to be m2
dyn,0. Also, the full propagators of eq. (5.27) must be first separated

into their IR (constant) and UV parts, for which it is better to think of that expression as

being analytically continued to Euclidean space.
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Expanding the Euclidean result eq. (5.26) in this way and dropping higher order terms

we obtain

〈φ̂a(x)φ̂b(x
′)〉(1) = δab

{
Ĝ(m)(x, x′) +

λ

4
[Ĝ(0)]ren

∂Ĝ(m)(x, x′)

∂m2

+
1

2N

[
3

√
λ

2Vd

∂Ĝ(m)(x, x′)

∂m2
+ 5

λ

2Vd

∂2Ĝ(m)(x, x′)

∂(m2)2

+
λ

4
[Ĝ(0)]ren

∂Ĝ(m)(x, x′)

∂m2

]}
mdyn,0

, (5.30)

while doing the same with the inhomogeneous part of the Lorentzian result eq. (5.27) yields

all but those terms proportional to [Ĝ(m)]ren. However, it is expected for these contributions

to be missing in the Lorentzian result of refs. [15, 16], given the nonsystematic way the

interactions among IR and UV sectors are treated there. Indeed, we can only trust that

result up to the leading IR order,
√
λ, and up to NLO in 1/N , in which case both results

are compatible.

The convenience of the Euclidean approach becomes evident as it provides a systematic,

order by order expansion in both
√
λ and 1/N , while also allowing for the inclusion of partial

resummations that cure the IR effects at large separations.

6 Conclusions

In this paper we considered an interacting O(N) scalar field model in d-dimensional Eu-

clidean de Sitter spacetime, paying particular attention to the IR problems that appear for

massless and light fields. We extended the approach of refs. [19, 20] to the O(N) model.

The zero modes are treated exactly while the corrections due to the interactions with the

UV modes are computed perturbatively. The calculation of the two-point functions of the

field shows that the exact treatment of the zero modes cures the IR divergences of the usual

massless propagator: the two-point functions becomes de Sitter invariant. However, the

NLO contains derivatives of the free propagator of the UV modes. Although the massless

UV propagator is de Sitter invariant, its Lorentzian counterpart exhibits a growing behav-

ior at large distances, invalidating the perturbative expansion in this limit. This problem

can be fixed in the leading order large N limit by resumming the higher order corrections:

one can show that the final result corresponds to a two-point functions of a free field with

a self-consistent mass.

In order to alleviate the behavior of the correlation functions in the IR limit, we

performed a resummation of a class of diagrams that give mass to the UV propagator.

After this resummation, higher order corrections can be systematically computed in a

perturbative expansion in powers of both
√
λ and 1/N . We presented explicit results up

to second order in
√
λ and NLO in 1/N .

In the leading large N limit, the results can be computed exactly, both in the Euclidean

approach and also working directly in the Lorentzian spacetime (which corresponds to the
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Hartree approximation [7–9]). We derived the corresponding results in the Lorentzian

spacetime paying particular attention to the renormalization process. We showed that the

Euclidean approach reproduces the Lorentzian results in this large N limit, provided the

same renormalization scheme is used. As we mentioned before, to our knowledge, the most

precise results previously obtained for this model are those presented in refs. [15, 16], which

are also valid up to the NLO in the large N expansion, but only at the leading IR order.

We have also shown that our results coincide with the ones of refs. [15, 16], when expanded

up to the corresponding order. Beyond the leading IR order, as we have emphasized along

the main text, a consistent treatment of the UV sector becomes necessary. The use of

the Euclidean path integral (which is simpler than its in-in counterpart) together with the

double perturbative expansion (in
√
λ and 1/N) performed in our calculations, allowed us

to further include the contribution of the UV modes and to consistently take into account

the renormalization process. Moreover, in this framework, the precision of the calculation

can be systematically improved by computing higher order corrections.

There are many directions in which the present work can be extended. An interesting

generalization of our calculations that we leave for future work is the study of the correc-

tions in the case of a tree level double-well potential. As customarily done in Minkowski

spacetime, it would be definitively interesting to use the Euclidean approach, together

with the appropriate analytical continuation, to perform calculations in nonstationary sit-

uations in a fixed de Sitter background spacetime. For instance, to develop a systematic

way of computing corrections to the effective action or to the expectation value of the

energy-momentum tensor of the quantum scalar fields, which is important for studying

the backreaction of the quantum fields on the dynamics of the spacetime geometry. Fur-

thermore, it would be valuable to extend the Euclidean techniques to other models, such

as theories with derivative interactions, with fermionic and/or gauge fields, and to study

metric perturbations around a de Sitter (or quasi de Sitter) background.
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A Effective potential

In this appendix we examine the quadratic part of the effective potential and relate it to

the variance of the zero modes. We start by defining the effective action for this theory,

Γ[φ̄0,
ˆ̄φ] = W [J0, Ĵ ]−

∫
x

(
φ̄0aJ0a + ˆ̄φa(x)Ĵa(x)

)
, (A.1)
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withW [J0, Ĵ ] = − log(Z[J0, Ĵ ]) the generating functional of connected diagrams, and where

φ̄0a =
δW [J0, Ĵ ]

δJ0a
, (A.2)

ˆ̄φa =
δW [J0, Ĵ ]

δĴa
, (A.3)

define the “classical” fields. The Effective Potential is obtained by evaluating the effective

action at a constant field, that is ˆ̄φ = 0, which in turn demands that Ĵ = 0, and then

dividing by the space volume Vd:

Vd Veff(φ̄0) = Γ[φ̄0, 0] = W [J0, 0]− φ̄0aJ0a. (A.4)

With the purpose of calculating the quadratic term of Veff(φ̄0) as a function of φ̄0, we

perform the following expansion,

Γ[φ̄0, 0] = Γ[0, 0] +
1

2

δ2Γ[φ̄0, 0]

δφ̄0aδφ̄0b

∣∣∣∣∣
φ̄0=0

φ̄0aφ̄0b + . . . , (A.5)

where the linear term vanishes for φ̄0 = 0, as it can be seen by differientiating eq. (A.4)

with respect to φ̄0,
δΓ[φ̄0, 0]

δφ̄0a
= −J0a, (A.6)

and taking into account that in the symmetric phase, the mean field φ̄0 vanishes if and

only if J0 = 0. Taking another derivative of the previous expression but now with respect

to J0, we obtain

δab = −δ
2Γ[φ̄0, 0]

δJ0bδφ̄0a
= −δφ̄0c

δJ0b

δ2Γ[φ̄0, 0]

δφ̄0cδφ̄0a
, (A.7)

where we used the chain rule for the second equality. Now, differientiating eq. (A.2) with

respect to J0 gives,
δφ̄0c

δJ0b
=
δ2W [J0, 0]

δJ0bδJ0c
, (A.8)

which, inserted in the previous expression leads to the conclusion that

δ2Γ[φ̄0, 0]

δφ̄0aδφ̄0b
= −

(
δ2W [J0, 0]

δJ0aδJ0b

)−1

. (A.9)

We now have to evaluate for φ̄0 = 0 (J0 = 0),

δ2W [J0, 0]

δJ0aδJ0b

∣∣∣∣∣
J0=0

= − 1

Z[0, 0]

δ2Z[J0, 0]

δJ0aδJ0b

∣∣∣∣∣
J0

= −〈φ0aφ0b〉, (A.10)

allowing us to identify the exact two-point functions of the zero modes 〈φ0aφ0b〉. In the

symmetric phase we expect any rank-2 tensor with respect to the internal O(N) inde-

ces to be proportional to the identity δab. Therefore inverting the previous quantity is

straightforward,
δ2Γ[φ̄0, 0]

δφ̄0aδφ̄0b
= δab

N

〈φ2
0〉
, (A.11)
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where we have expressed the result in terms of the variance of |φ0|, i.e. 〈φ2
0〉 = δab〈φ0aφ0b〉.

Finally, we replace this last expression in eq. (A.5) and we divide by Vd, in order to obtain

the effective potential up to quadratic order, eq. (2.9).

B Functional derivatives of Ẑf [Ĵ ]

Using that Ẑf [Ĵ ] is a free generating functional, its functional derivatives evaluated at

Ĵ = 0 can be easily expressed in terms of the free UV propagator Ĝ(x, x′). The only

somewhat tricky part is to keep track of the O(N)-indeces. The useful expressions are

δ2Ẑf [Ĵ ]

δĴa(x1)δĴb(x2)

∣∣∣∣∣
Ĵ=0

= Ĝ(m)(x1, x2)δab, (B.1)

δ4Ẑf [Ĵ ]

δĴa(x1)δĴb(x2)δĴc(x3)δĴd(x4)

∣∣∣∣∣
Ĵ=0

= Ĝ(m)(x1, x2)Ĝ(m)(x3, x4)δabδcd

+Ĝ(m)(x1, x3)Ĝ(m)(x2, x4)δacδbd

+Ĝ(m)(x1, x4)Ĝ(m)(x2, x3)δadδbc. (B.2)

In the case of the sixth derivative, it is not necessary to write down the most general

expression for six different points, since we only need particular cases with some of them

evaluated in coincidence. The two particular cases we need are[
(N + 4)δcdδef + 4

Acdef
(N + 2)

]∫∫
x,x′

δ6Ẑf [Ĵ ]

δĴ6
abcdef (x1, x2, x, x, x′, x′)

∣∣∣∣∣
Ĵ=0

= N

[
(N + 2)2V 2

d [Ĝ(m)]2 + 2(N + 8)

∫∫
x,x′

Ĝ(m)(x, x′)2

]
δabĜ

(m)(x1, x2)

+4(N + 2)2δabVd[Ĝ
(m)]

∫
x
Ĝ(m)(x1, x)Ĝ(m)(x, x2)

+8(N + 8)δab

∫∫
x,x′

Ĝ(m)(x1, x)Ĝ(m)(x′, x2)Ĝ(m)(x, x′), (B.3)

and

δcdδef

∫
x

δ6Ẑf [Ĵ ]

δĴ6
abcdef (x1, x2, x, x, x, x)

∣∣∣∣∣
Ĵ=0

= N(N + 2)δabVd[Ĝ
(m)]2Ĝ(m)(x1, x2) (B.4)

+4(N + 2)δab[Ĝ
(m)]

∫
x
Ĝ(m)(x1, x)Ĝ(m)(x, x2).

C Renormalization

The renormalization process is performed by the addition of two counterterms in the action,∫
ddx
√
gδm2φaφa/2 and

∫
ddx
√
gδλ(φaφa)

2/8N . It is safe to assume that, as in the usual

perturbative case, δm2 ∼ λ and δλ ∼ λ2, therefore at NNLO we need to consider terms
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with δm2, (δm2)2 and δλ. This leads to the following new contributions to the generating

functional,

∆Z[J0, Ĵ ] = Z0[J0]Ẑf [Ĵ ]

{
Vdδm

2

2

(
〈φ2

0〉0 −
δ2Z0[J0]

δJ0aδJ0b
δab

)
(C.1)

+

[
Vdδλ

8N
〈φ4

0〉0 +
V 2
d (δm2)2

4

(
〈φ2

0〉20 −
〈φ4

0〉0
2

)]}

+Ẑf [Ĵ ]

{
−
V 2
d (δm2)2

4
〈φ2

0〉0
δ2Z0[J0]

δJ0aδJ0b
δab

+

(
V 2
d (δm2)2

8
− Vdδλ

8N

)
δ4Z0[J0]

δJ0aδJ0bδJ0cδJ0d
δabδcd

}

+Z0[J0]
δm2

2

[
Ẑf [Ĵ ]NVd[Ĝ

(m)]−
∫
x

δ2Ẑf [Ĵ ]

δĴa(x)δĴb(x)
δab

]

+
λ

4N

Vdδm
2

2
Aabcd

∫
x

δ2Ẑf [Ĵ ]

δĴc(x)δĴd(x)

×

[
δ4Z0[J0]

δJ0aδJ0bδJ0eδJ0f
− 〈φ2

0〉0
δ2Z0[J0]

δJ0aδJ0b
δab

]
.

Tracking these terms into the calculation of both the UV and IR two-point functions,

produce the following contributions:

∆
(
〈φ̂a(x)φ̂b(x

′)〉
)

= δab

[
1− λ

4N2
(N + 2)Vd

(
〈φ4

0〉0 − 〈φ2
0〉20
)]
δm2∂Ĝ

(m)(x, x′)

∂m2
, (C.2)

to be added to eq. (3.13), and

∆ (〈φ0aφ0b〉) =
δab
N

{
Vdδm

2

2

(
〈φ2

0〉20 − 〈φ4
0〉0
)

(C.3)

+
(
〈φ6

0〉0 − 〈φ2
0〉0〈φ4

0〉0
) [V 2

d (δm2)2

8
− Vdδλ

8N
+

λ

8N
(N + 2)δm2V 2

d [Ĝ(m)]

]

+
(
〈φ2

0〉30 − 〈φ2
0〉0〈φ4

0〉0
) [V 2

d (δm2)2

4
+

λ

4N
(N + 2)δm2V 2

d [Ĝ(m)]

]}
,

to be added to a previous step of eq. (3.24) (not shown), which is just like eq. (3.24) with

the ren and fin labels removed.

With these additions coming from the counterterms, it is straightforward to see that

the choices eqs. (3.15) and (3.23) render the results finite, leading to the renormalized

expressions eqs. (3.18) and (3.24).
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D Integrals of the Euclidean UV propagator

The UV propagator can be written as

Ĝ(m)(x, x′) = Hd
∑
~L 6=0

Y~L(x)Y ∗~L
(x′)

H2L(L+ d− 1) +m2
. (D.1)

Then, we have

∫
x
Ĝ(m)(x, x) = Hd

∑
~L 6=0

(∫
x Y~L(x)Y ∗~L

(x)
)

H2L(L+ d− 1) +m2

=
∑
~L 6=0

1

H2L(L+ d− 1) +m2
, (D.2)

where we have used the orthogonality relation of the spherical harmonics∫
x
Y~L(x)Y ∗~L′(x) = H−dδ~L ~L′ . (D.3)

Now focusing on the NNLO contributions to the UV part of the two-point function,

we have ∫
z
Ĝ(m)(x, z)Ĝ(m)(z, x′). (D.4)

Expanding in spherical harmonics, integrating and using the orthogonality relation we

obtain

H−2d
∑

~L 6=0, ~L′ 6=0

Y~L(x)
(∫

z Y
∗
~L

(z)Y ~L′(z)
)
Y ∗~L′

(x′)

[H2L(L+ d− 1) +m2][H2L′(L′ + d− 1) +m2]

= H−d
∑
~L 6=0

Y~L(x)Y ∗~L′
(x′)

[H2L(L+ d− 1) +m2]2
. (D.5)

Now, we notice that

1

[H2L(L+ d− 1) +m2]2
= − ∂

∂m2

[
1

H2L(L+ d− 1) +m2

]
, (D.6)

and therefore, under the assumption that we can pull the derivative out of the series, we

conclude that ∫
z
Ĝ(m)(x, z)Ĝ(m)(z, x′) = −∂Ĝ

(m)(x, x′)

∂m2
. (D.7)

Similarly, it can be shown that∫∫
y,z
Ĝ(m)(x, y)Ĝ(m)(y, z)Ĝ(m)(z, x′) =

1

2

∂2Ĝ(m)(x, x′)

∂(m2)2
. (D.8)
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E UV propagators (analytical continuation and IR behavior)

The full Euclidean propagator with mass m2 in d-dimensions is

G(m)(x, x′) =
Hd−2Γ

(
d−1

2 − νd
)

Γ
(
d−1

2 + νd
)

(4π)d/2Γ
(
d
2

) 2F1

(
d− 1

2
− νd,

d− 1

2
+ νd;

d

2
; s

)
, (E.1)

where νd =
√

(d−1)2

4 − m2

H2 , s = (1+z)/2, with z = δABX
A(x)XB(x′) (using the embedding

in d + 1-dimensional Euclidean space and cartesian coordinates). After the analytical

continuation X0 → iX0, and using comoving coordinates we can write this de Sitter

invariant variable as s = (1 + z)/2 = 1− r/4 where r = [−(η − η′)2 + |~x− ~x′|2]/ηη′. Now,

we can use the iε prescription to obtain the Feynman propagator z → z− iε. In Lorentzian

spacetime, unlike in Euclidean space, distances between points can be arbitrarily large. In

the limit r → +∞, i.e. at large spatial separations or late times, the massive free propagator

decays as

G
(m)
F (r) ∼ r−m2/(d−1)H2

. (E.2)

In order to consider the massless case, we first obtain the Euclidean UV propagator

from eq. (E.1), by subtracting the contribution from the zero modes:

Ĝ(m) = G(m) −G(m)
0 (E.3)

with G
(m)
0 = 1/(Vdm

2). For m→ 0, we get

Ĝ(0)(r) =
Hd−2

(4π)d/2

{
sΓ(d) 3F2

(
1, 1, d; 2, d2 + 1; 1− r/4

)
Γ
(
d+2

2

) − (hd−2Γ(d) + Γ(d− 1))

(d− 1)Γ
(
d
2

) }
,

(E.4)

where hn = 1 + 1/2 + · · ·+ 1/n is the Harmonic number. For d = 4 it reduces to

Ĝ(0)(r) = H2

{
14(1− r/4)− (3r/2) log(r/4)− 11

12π2r

}
. (E.5)

Then, using the iε-prescription, the corresponding massless Feynman propagator is

Ĝ
(0)
F (r) =

H2

(4π)2

{
4

r + iε
− 2 log

(
r + iε

4

)
− 14

3

}
, (E.6)

showing that when r → +∞
Ĝ

(0)
F (r) ∼ log(r). (E.7)

Analogously, it can be shown that the derivatives with respect to the mass pick up further

powers of log(r):

∂kĜ
(m)
F (r)

∂(m2)k

∣∣∣∣∣
0

∼ log(r)k+1. (E.8)
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F Double expansion and diagrammatics (the massless case)

In this appendix we focus on the corrections to the UV propagator and the associated

diagrammatics for the case of fields with vanishing tree-level masses. The zero modes are

treated nonperturbatively using the exact Euclidean path integrals in the absence of the

nonzero modes. On the one hand, from these path integrals we have learnt that each power

of φ0,a scales as λ−1/4, while each φ̂a does not add any factor of λ (i.e., it counts as λ0).

On the other hand, we know that in the massless limit (m2 → 0) the free propagators in

the Lorentzian spacetime increase at large distances, and that a derivative with respect to

m2 of the propagators adds a logarithmic-growth factor (see appendix E).

For assessing the importance of each diagram after the analytical continuation to the

Lorentzian spacetime we need to understand how the behavior of each of them at large

distances would be. For this, it is very useful to note that equations like (3.16) and (3.17)

hold in general, namely∫
. . .

∫
x2,...,xk−1

Ĝ(m)(x1, x2) . . . Ĝ(m)(xk−1, xk) ∝
∂k−2Ĝ(m)(x, x′)

∂(m2)k−2
. (F.1)

Therefore, by representing each logarithmic-growth factor by y (i.e., using the notation of

appendix E, y ∼ log r) we see the right hand side scales as yk−1.

In order to draw Feynman diagrams, we use a dash line for the variance of the zero

modes (which is always computed nonperturbatively using the exact path integral for the

zero modes in isolation and scales as 1/
√
λ) and a solid line for the free UV propagator

(which depending on the diagram may contribute with a factor of y). Hence, using that for

each vertex we have a factor of λ/N , one can conclude that the diagram in figure 3 scales

as y(
√
λy) and becomes of the same order as the free UV propagator (which scales as y)

when
√
λy ∼ 1, indicating a break down of the perturbation theory when the distance is

sufficiently large. Actually, there are more diagrams that also become of the same order

in that case, as, for instance, those shown in figure 4. Indeed, it is not difficult to see that

the one with n-vertices scales as y(
√
λy)n, representing a relative correction that goes as

(
√
λy)n. We were able to perform the resummation of these diagrams in section 5.

Now, in order to see that the rest of the contributions can be treated perturbatively,

let us analyze each of them separately, according to the type of vertex. Let us start with

other corrections associated to the bi-quadratic interaction term of eq. (5.1). The leading

order diagram involving this vertex which is not included in the resummation is the one

on the left in figure 5, and gives a relative correction that scale as
√
λ(
√
λy). Then, for λ

sufficiently small it can be considered as a small correction to the ones of figure 3 at all

times. The other type of correction that also contributes up to the NLO in 1/N involves

the last interaction term in eq. (3.1) and the corresponding diagram is the one in figure 5 to

the right and gives a correction relative to the free propagator that also goes as
√
λ(
√
λy).

G Derivative of [det Ĝ(m)
rs ]1/2

From the well known identity

log det(Ĝ(m)
rs ) = Tr log(Ĝ(m)

rs ), (G.1)
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Figure 3. Feynman diagram contributing to the UV propagator. Free UV propagators are repre-

sented by a solid line, while the full variance of the zero modes in the absence of the other modes

is represented by a dashed line.

+ + . . .

Figure 4. Feynman diagrams contributing to the UV propagator, which become of the same order

as the one in figure 3 when
√
λy ∼ 1. The first one scales as y(

√
λy)2, the second one as y(

√
λy)3

and so on.

Figure 5. Feynman diagrams contributing to the UV propagator that are to be included pertur-

batively. Both diagrams scale as (
√
λy)2.

we have

log[det Ĝ(m)
rs ]1/2 = −1

2
δab

∫
x

log(Ĝ−1
ab (x, x)). (G.2)

Diferentiating at both sides with respect to m2
ij we then obtain

1

[det Ĝ
(m)
rs ]1/2

∂[det Ĝ
(m)
rs ]1/2

∂m2
ij

= −1

2
δab

∫∫
x,x′

Ĝac(x, x
′)
∂Ĝ−1

cb (x′, x)

∂m2
ij

, (G.3)

while from eq. (5.3) we know that

∂Ĝ−1
ab (x, x′)

∂m2
ij

= δaiδbjδ
(d)(x− x′), (G.4)

and therefore

1

[det Ĝ
(m)
rs ]1/2

∂[det Ĝ
(m)
rs ]1/2

∂m2
ij

= −1

2
δijVd[Ĝ], (G.5)

where we used that [Ĝab] = δab[Ĝ] in the symmetric phase. Tracing the remaining free

indeces ij proves eq. (5.16).

H Expanding the UV resummed result in
√
λ

As a cross-check, we expand back the UV resummed two-point functions of the UV modes,

eq. (5.26), and compare it to the perturbative one, eq. (3.18), for m = 0. All the UV

propagators with dynamical masses must be expanded in
√
λ, up to the needed order. For

example

Ĝ(mdyn,0)(x, x′) = Ĝ(0)(x, x′) +

√
λ

2Vd

∂Ĝ(0)(x, x′)

∂m2
+

1

2

λ

2Vd

∂2Ĝ(0)(x, x′)

∂(m2)2
+O(λ3/2), (H.1)
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and

2Ĝ(
√

3mdyn,0)(x, x′)− 2Ĝ(mdyn,0)(x, x′) = 4

√
λ

2Vd

∂Ĝ(0)(x, x′)

∂m2
(H.2)

+8
λ

2Vd

∂2Ĝ(0)(x, x′)

∂(m2)2
+O(λ3/2),

and so on. The resulting expression up to order λ and 1/N is precisely eq. (4.2).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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