4,940 research outputs found

    Correlated measurements of UHF radar signatures, RF radiation and electric field changes from lightning

    Get PDF
    During Storm Hazards - 82, simultaneous measurements are made of radar echoes, fast and slow field changes and RF radiation from lightning. Radio frequency radiation and radar echoes are also obtained during periods when the research aircraft is struck by lightning. These data are presently used to better understand the electrical processes which occur during strikes to the aircraft. Preliminary conclusions verify that the events recorded aboard the aircraft occurred during lightning but also indicate that they occur with surprising frequency very early in the flash

    NN Interaction JISP16: Current Status and Prospect

    Full text link
    We discuss realistic nonlocal NN interactions of a new type - J-matrix Inverse Scattering Potential (JISP). In an ab exitu approach, these interactions are fitted to not only two-nucleon data (NN scattering data and deuteron properties) but also to the properties of light nuclei without referring to three-nucleon forces. We discuss recent progress with the ab initio No-core Shell Model (NCSM) approach and respective progress in developing ab exitu JISP-type NN-interactions together with plans of their forthcoming improvements.Comment: 9 pages, 3 figures, to be published in Proceedings of Few-body 19 conferenc

    String theory extensions of Einstein-Maxwell fields: the static case

    Get PDF
    We present a new approach for generation of solutions in the four-dimensional heterotic string theory with one vector field and in the five-dimensional bosonic string theory starting from the static Einstein-Maxwell fields. Our approach allows one to construct the solution classes invariant with respect to the total subgroup of the three-dimensional charging symmetries of these string theories. The new generation procedure leads to the extremal Israel-Wilson-Perjes subclass of string theory solutions in a special case and provides its natural continuous extension to the realm of non-extremal solutions. We explicitly calculate all string theory solutions related to three-dimensional gravity coupled to an effective dilaton field which arises after an appropriate charging symmetry invariant reduction of the static Einstein-Maxwell system.Comment: 19 pages in late

    Defining rural areas of Visegrad countries

    Get PDF
    The article is focused on the introduction and categorization of various approaches to rurality, and the identification and delimitation of rural areas in Visegrad countries. Three substantively different groups of conceptualizations and definitions of rural and rurality are described as follows: functional definitions, rural as locality (political-economic approaches), and social representation. Latter, basic sorts of methods and appro - aches to the delimitation of rural areas in V4 countries are introduced emphasizing its historical development, differences in spatial level and criteria of delimitation in current research. Due to different nature of rural areas and even local administrative units (the basic units usually used for delimitation of rural areas), it is not possible to reach sufficient and reliable identification of rural areas for whole V4 area using any of criteria or definitions applied in the research at national levels. Therefore, the average population density of entire V4 area was used as a main criterion for distinguishing between urban and rural LAU 2 at the whole Visegrad area level. Such approach is also affected by generalization but it captures various conditions in each country relatively well and moreover, it is comparable with the OECD and European Union methods to some extent

    Population of isomers in decay of the giant dipole resonance

    Full text link
    The value of an isomeric ratio (IR) in N=81 isotones (137^{137}Ba, 139^{139}Ce, 141^{141}Nd and 143^{143}Sm) is studied by means of the (γ,n)\gamma, n) reaction. This quantity measures a probability to populate the isomeric state in respect to the ground state population. In (γ,n)\gamma, n) reactions, the giant dipole resonance (GDR) is excited and after its decay by a neutron emission, the nucleus has an excitation energy of a few MeV. The forthcoming γ\gamma decay by direct or cascade transitions deexcites the nucleus into an isomeric or ground state. It has been observed experimentally that the IR for 137^{137}Ba and 139 ^{139}Ce equals about 0.13 while in two heavier isotones it is even less than half the size. To explain this effect, the structure of the excited states in the energy region up to 6.5 MeV has been calculated within the Quasiparticle Phonon Model. Many states are found connected to the ground and isomeric states by E1E1, E2E2 and M1M1 transitions. The single-particle component of the wave function is responsible for the large values of the transitions. The calculated value of the isomeric ratio is in very good agreement with the experimental data for all isotones. A slightly different value of maximum energy with which the nuclei rest after neutron decay of the GDR is responsible for the reported effect of the A-dependence of the IR.Comment: 16 pages, 4 Fig

    A Quantum Mechanical Model of the Reissner-Nordstrom Black Hole

    Get PDF
    We consider a Hamiltonian quantum theory of spherically symmetric, asymptotically flat electrovacuum spacetimes. The physical phase space of such spacetimes is spanned by the mass and the charge parameters MM and QQ of the Reissner-Nordstr\"{o}m black hole, together with the corresponding canonical momenta. In this four-dimensional phase space, we perform a canonical transformation such that the resulting configuration variables describe the dynamical properties of Reissner-Nordstr\"{o}m black holes in a natural manner. The classical Hamiltonian written in terms of these variables and their conjugate momenta is replaced by the corresponding self-adjoint Hamiltonian operator, and an eigenvalue equation for the ADM mass of the hole, from the point of view of a distant observer at rest, is obtained. Our eigenvalue equation implies that the ADM mass and the electric charge spectra of the hole are discrete, and the mass spectrum is bounded below. Moreover, the spectrum of the quantity M2Q2M^2-Q^2 is strictly positive when an appropriate self-adjoint extension is chosen. The WKB analysis yields the result that the large eigenvalues of the quantity M2Q2\sqrt{M^2-Q^2} are of the form 2n\sqrt{2n}, where nn is an integer. It turns out that this result is closely related to Bekenstein's proposal on the discrete horizon area spectrum of black holes.Comment: 37 pages, Plain TeX, no figure

    Intrinsic regulation of FIC-domain AMP-transferases by oligomerization and automodification

    Get PDF
    Filamentation induced by cyclic AMP (FIC)-domain enzymes catalyze adenylylation or other posttranslational modifications of target proteins to control their function. Recently, we have shown that Fic enzymes are autoinhibited by an α-helix (αinh) that partly obstructs the active site. For the single-domain class III Fic proteins, the αinh is located at the C terminus and its deletion relieves autoinhibition. However, it has remained unclear how activation occurs naturally. Here, we show by structural, biophysical, and enzymatic analyses combined with in vivo data that the class III Fic protein NmFic from Neisseria meningitidis gets autoadenylylated in cis, thereby autonomously relieving autoinhibition and thus allowing subsequent adenylylation of its target, the DNA gyrase subunit GyrB. Furthermore, we show that NmFic activation is antagonized by tetramerization. The combination of autoadenylylation and tetramerization results in nonmonotonic concentration dependence of NmFic activity and a pronounced lag phase in the progress of target adenylylation. Bioinformatic analyses indicate that this elaborate dual-control mechanism is conserved throughout class III Fic proteins

    Aharonov-Bohm interference in quantum ring exciton: effects of built-in electric fields

    Get PDF
    We report a comprehensive discussion of quantum interference effects due to the finite structure of excitons in quantum rings and their first experimental corroboration observed in the optical recombinations. Anomalous features that appear in the experiments are analyzed according to theoretical models that describe the modulation of the interference pattern by temperature and built-in electric fields.Comment: 6 pages, 7 figure
    corecore