66 research outputs found

    Hybrid kinematic control for rigid body pose stabilization using dual quaternions

    Get PDF
    In this paper, we address the rigid body pose stabilization problem using dual quaternion formalism. We propose a hybrid control strategy to design a switching control law with hysteresis in such a way that the global asymptotic stability of the closed-loop system is guaranteed and such that the global attractivity of the stabilization pose does not exhibit chattering, a problem that is present in all discontinuous-based feedback controllers. Using numerical simulations, we illustrate the problems that arise from existing results in the literature—as unwinding and chattering—and verify the effectiveness of the proposed controller to solve the robust global pose stability problem

    Comparison of isoprene chemical mechanisms under atmospheric night-time conditions in chamber experiments : Evidence of hydroperoxy aldehydes and epoxy products from NO3 oxidation

    Get PDF
    The gas-phase reaction of isoprene with the nitrate radical (NO3) was investigated in experiments in the outdoor SAPHIR chamber under atmospherically relevant conditions specifically with respect to the chemical lifetime and fate of nitrato-organic peroxy radicals (RO2). Observations of organic products were compared to concentrations expected from different chemical mechanisms: (1) the Master Chemical Mechanism, which simplifies the NO3 isoprene chemistry by only considering one RO2 isomer; (2) the chemical mechanism derived from experiments in the Caltech chamber, which considers different RO2 isomers; and (3) the FZJ-NO3 isoprene mechanism derived from quantum chemical calculations, which in addition to the Caltech mechanism includes equilibrium reactions of RO2 isomers, unimolecular reactions of nitrate RO2 radicals and epoxidation reactions of nitrate alkoxy radicals. Measurements using mass spectrometer instruments give evidence that the new reactions pathways predicted by quantum chemical calculations play a role in the NO3 oxidation of isoprene. Hydroperoxy aldehyde (HPALD) species, which are specific to unimolecular reactions of nitrate RO2, were detected even in the presence of an OH scavenger, excluding the possibility that concurrent oxidation by hydroxyl radicals (OH) is responsible for their formation. In addition, ion signals at masses that can be attributed to epoxy compounds, which are specific to the epoxidation reaction of nitrate alkoxy radicals, were detected. Measurements of methyl vinyl ketone (MVK) and methacrolein (MACR) concentrations confirm that the decomposition of nitrate alkoxy radicals implemented in the Caltech mechanism cannot compete with the ring-closure reactions predicted by quantum chemical calculations. The validity of the FZJ-NO3 isoprene mechanism is further supported by a good agreement between measured and simulated hydroxyl radical (OH) reactivity. Nevertheless, the FZJ-NO3 isoprene mechanism needs further investigations with respect to the absolute importance of unimolecular reactions of nitrate RO2 and epoxidation reactions of nitrate alkoxy radicals. Absolute concentrations of specific organic nitrates such as nitrate hydroperoxides would be required to experimentally determine product yields and branching ratios of reactions but could not be measured in the chamber experiments due to the lack of calibration standards for these compounds. The temporal evolution of mass traces attributed to product species such as nitrate hydroperoxides, nitrate carbonyl and nitrate alcohols as well as hydroperoxy aldehydes observed by the mass spectrometer instruments demonstrates that further oxidation by the nitrate radical and ozone at atmospheric concentrations is small on the timescale of one night (12gh) for typical oxidant concentrations. However, oxidation by hydroxyl radicals present at night and potentially also produced from the decomposition of nitrate alkoxy radicals can contribute to their nocturnal chemical loss

    Adaptive remodelling of intestinal epithelium assessed using stereology: correlation of single cell and whole organ data with nutrient transport

    No full text
    Adaptation in the intestinal epithelium depends on cell number and the properties of individual cells but these responses operate within different time frames. Changes in number take days to accomplish but those in behaviour may occur within hours. This article reviews the value of stereology for characterising structural features of the average enterocyte and the entire organ (mammalian small intestine or avian lower intestine) during adaptation. Stereological data are correlated with the physiology and molecular biology of glucose and Na+ transpon. In small intestine, account is taken of vertical (crypt-villus) and longitudinal (craniocaudal) gradients and of adaptations to chemically-induced diabetes and diet. Results show that longer-term adaptation depends critically on epithelial renewal. In diabetic small intestine, changes in glucose transport are accompanied by changes in the number, but not morphology, of villous enterocytes. In avian lower intestine, increased Na+ transport requires changes in cell number and the extent of their apical, but not basolateral, membrane surfaces. These changes allow opportunities to incorporate more (or more active) transport sites in apical and basolateral membrane domains of individual cells and of whole organs

    MEASUREMNT OF MCV

    No full text

    Epithelia1 integrity, cell death and cell loss in mammalian small intestine

    No full text
    In recent years, the different mechanisms of epithelial cell loss which occur in mammalian and avian small intestine have been re-investigated. Information is now available for a variety of mammalian types and mechanisms can be divided into two major classes: [i] those preserving epithelial integrity by maintaining intercellular tight junctions throughout early-to-late stages of cell extrusion; and [ii] those which compromise integrity by introducing breaches in epithelial continuity. Both classes are associated with the activity andtor proximity of non-epithelia1 cells (mainly lymphocytes and mononuclear phagocytes) located in the epithelium or underlying lamina propria. Intraepithelial lymphocytes may be involved in enterocyte targetting and killing whilst lamina propria (LP) macrophages sequester cell debris. Where epithelial integrity is maintained, two types of loss can be identified. In the first (type l), complete cells are extruded into the lumen. In the second (type 2), only anucleate apical cell fragments pass into the lumen . There are two variants of type 2 loss distinguishable by the fate of the nucleated basal portions of cells. One variant (type 2a) creates large intercellular spaces extending from the preserved apical cap to the basal lamina and containing enterocyte debris for phagocytosis. The second (type 2b) involves the gradual shrinkage of individual cells (which become more electron-dense) and in situ degeneration of their nucleated subapical portions in increasingly narrower intercellular spaces between adjacent healthy enterocytes. The mechanism of removal of these fragments is unclear but may be via macrophages or surrounding enterocytes. Apoptosis has been implicated in both type 1 and type 2 extrusion. In contrast, type 3 loss involves morphological changes in enterocytes which are reminiscent of those seen in necrosis and is accompanied by breaks in epithelial continuity following cell swelling, a decrease in cell electron density and total or subtotal degradation of organelles and membranes. It ends in loss of either an abnormal cell apex (with subsequent exposure of the degraded cell contents and their spillage into the lumen) or a complete cell remnant (extruded into the lumen before total disintegration of plasma membranes)
    corecore