225 research outputs found

    Synthesis of Amphiphilic Three-Armed Star Random Copolymers via Living Radical Polymerization and their Unimolecular Folding Properties in Water

    Get PDF
    Amphiphilic three-armed star random copolymers were synthesized by ruthenium-catalyzed living radical copolymerization of hydrophilic poly(ethylene glycol) methyl ether methacrylate (PEGMA) and hydrophobic dodecyl methacrylate (DMA). Their amphiphilic star random copolymers with 10-50 mol% DMA efficiently self-folded in water with intramolecular hydrophobic interaction to form compact unimolecular micelles. Owing to PEG segments, star copolymers were thermoresponsive to induce lower critical solution temperature-type phase separation in water

    Comparisons of instability in device characteristics at high temperature for thin-film SOI power n- and p- channel MOSFETs

    Get PDF
    This paper investigate instability in device characteristics related to the hot carrier effect, Negative Bias Temperature Instability (NBTI) and Positive Bias Temperature (PBTI) under DC stress for n- and p-channel thin-film Silicon on Insulator (SOI) power MOSFET at high temperature. The threshold voltage shift increases as the temperature rises due to PBTI for n-MOSFET and NBTI for p-MOSFET. Drain Avalanche Hot Carrier (DAHC) occurs when the gate stress voltage is near the threshold voltage and Channel Hot Carrier (CHC) occurs when the gate voltage is high. The threshold voltage shift and the degradation rate of on-resistance of the n-MOSFET is larger than that of the p-MOSFET due to the difference in the impact ionization coefficient between electrons and holes.2020 IEEE Region 10 Conference (TENCON), 16-19 November, 2020, Osaka, Japan(新型コロナ感染拡大に伴い、オンライン開催に変更

    Coronary Artery Spasm and Perivascular Adipose Tissue Inflammation: Insights From Translational Imaging Research

    Get PDF
    Perivascular adipose tissue, which constitutes perivascular components along with the adventitial vasa vasorum, plays an important role as a source of various inflammatory mediators in cardiovascular disease. Inflammatory changes in the coronary adventitia are thought to be involved in the pathogenesis of coronary artery spasm and vasospastic angina. Recent advances in translational research using non- invasive imaging modalities, including 18F-fluorodeoxyglucose PET and cardiac CT, have enabled us to visualise perivascular inflammation in the pathogenesis of coronary artery spasm. These modality approaches appear to be clinically useful as a non-invasive tool for examining the presence and severity of vasospastic angina

    Uniaxial strain effects on the superconducting transition in Re-doped Hg-1223 cuprate superconductors

    Get PDF
    The effects of uniaxial strain and hydrostatic pressure on Hg0.83Re0.18Ba2Ca2.4Cu3.6O14 [Hg0.83(Re0.18)-1223] were investigated by ac magnetic measurements under stress corresponding to a pressure of 20 GPa at maximum. According to a previous thermal study based on the Ehrenfest relation, in-plane contraction should increase the superconducting transition temperature Tc, whereas out-of-plane contraction should decrease Tc. This suggests that the increase in Tc under hydrostatic-pressure contraction must be smaller than that under in-plane contraction. However, the present uniaxial-strain experiments revealed enhancement of Tc under both in-plane and out-of-plane contraction, and the largest enhancement was observed under hydrostatic-pressure contraction. According to a band calculation, all contraction styles induce hole doping from the HgO blocks to the CuO2 blocks, and hydrostatic-pressure contraction yields the largest hole doping among three contractions. This behavior explains well a series of changes in Tc in the stress region of below 8 GPa. More specifically, under hydrostatic-pressure contraction, Tc exhibited an increase, a decrease, and another increase with increasing pressure, and this multistep change is similar to that observed in Bi-2223-type cuprate superconductors, suggesting that it is necessary to distinguish the effect of strain on the middle CuO2 plane in the three-CuO2-plane package from that on the outer planes

    Mechanisms of Coronary Artery Spasm

    Get PDF
    Recent clinical trials have highlighted that percutaneous coronary intervention in patients with stable angina provides limited additional benefits on top of optimal medical therapy. This has led to much more attention being paid to coronary vasomotion abnormalities regardless of obstructive or non-obstructive arterial segments. Coronary vasomotion is regulated by multiple mechanisms that include the endothelium, vascular smooth muscle cells (VSMCs), myocardial metabolic demand, autonomic nervous system and inflammation. Over the years, several animal models have been developed to explore the central mechanism of coronary artery spasm. This review summarises the landmark studies on the mechanisms of coronary vasospasm demonstrating the central role of Rho-kinase as a molecular switch of VSMC hypercontraction and the important role of coronary adventitial inflammation for Rho-kinase upregulation in VSMCs

    Molecular mechanism of cerebral edema improvement via IL-1RA released from the stroke-unaffected hindlimb by treadmill exercise after cerebral infarction in rats

    Full text link
    Cerebral edema following cerebral infarction can be severe and directly affect mortality and mobility. Exercise therapy after cerebral infarction is an effective therapeutic approach; however, the molecular mechanism remains unclear. Myokines such as interleukin-1 receptor antagonist (IL-1RA) are released during skeletal muscle contraction with effects on other organs. We hypothesized that myokine release during exercise might improve brain edema and confirmed the hypothesis using transient middle cerebral artery occlusion (tMCAO) model rats. Rats subjected to tMCAO were divided according to the severity of illness and further assigned to exercise and non-exercise groups. Treadmill exercises were performed at a speed of 2–8 m/min for 10 min from 1–6 days post-reperfusion after tMCAO. Exercise significantly reduced edema and neurological deficits in severely ill rats, with a reduction in aquaporin-4 (AQP4) expression in the ischemic core and increased blood IL-1RA release from the stroke-unaffected hindlimb muscle after tMCAO. Administration of IL-1RA into the lateral ventricles significantly reduced edema and AQP4 expression in the ischemic core. In conclusion, treadmill exercise performed in the early phase of stroke onset alleviated the decrease in blood IL-1RA following ischemic stroke. IL-1RA administration decreased astrocytic AQP4 expression in the ischemic core, suppressing brain edema.Gono R., Sugimoto K., Yang C., et al. Molecular mechanism of cerebral edema improvement via IL-1RA released from the stroke-unaffected hindlimb by treadmill exercise after cerebral infarction in rats. Journal of Cerebral Blood Flow and Metabolism, 43(5), 812-827. © 2023 SAGE Publishing. DOI: 10.1177/0271678X231151569

    Pericardial Effusion With Tamponade in Lung Cancer Patients During Treatment With Nivolumab: A Report of Two Cases

    Get PDF
    Background: Nivolumab is an immune checkpoint inhibitor (ICI) that has shown efficacy for treating non-small cell lung cancer and has become a standard therapy for previously treated non-small cell lung cancer. Moreover, immune-related adverse events of ICI therapy are well-known. Malignant pericardial effusions occasionally arise in patients with lung cancer. There have been a few reports of pericardial effusion in non-small cell lung cancer after nivolumab administration. However, the cause of this condition is controversial; the possibilities include serositis as an immune-related adverse event or pseudo-progression.Case Presentation: This report presents two cases of pericardial effusion with tamponade in lung cancer during treatment with nivolumab. Both patients experienced temporal increases in pericardial effusions followed by effusion regression. In one case, nivolumab administration was continued after performance of pericardiocentesis, without an increase in pericardial effusion. In the other case, temporal simultaneous increases in both the pericardial effusion and the primary tumor were detected, followed by simultaneous regression in both the effusion and the tumor. These findings support the fact that the pericardial effusions were caused by pseudo-progression.Conclusions: Pericardial effusion with tamponade can occur in lung cancer patients being treated with nivolumab; moreover, some of these effusions might be caused by pseudo-progression. In the case of putative pseudo-progression, continuation of nivolumab administration might be allowable with strict follow up
    corecore