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Coronary Artery Spasm and Adventitial Inflammation
Coronary artery spasm plays an important role in the pathogenesis of 

a wide range of ischaemic heart disease, not only in variant angina, 

but also in other forms of angina pectoris and myocardial infarction.1,2  

Recent studies have demonstrated that coronary spasm is also as 

frequently noted in European people as in Asian people.3 

We have previously demonstrated that activation of Rho kinase,  

a molecular switch for vascular smooth muscle cell contraction, is 

a central mechanism of coronary spasm in animals and humans.1,4,5 

In addition, we demonstrated that coronary spasm can be induced 

without endothelial dysfunction in a porcine model with chronic 

adventitial application of interleukin-1 beta through Rho kinase 

activation.6 In these studies, we demonstrated that vascular smooth 

muscle cell hypercontraction induced by adventitial inflammation 

through Rho kinase activation, rather than endothelial dysfunction, 

plays a major role in the pathogenesis of coronary spasm.1,4,5 

We also recently demonstrated that optical coherence tomography 

(OCT) enables us to precisely observe the adventitial vasa vasorum 

(VV) area, and that adventitial inflammatory changes, including VV 

formation, play important roles in the pathogenesis of coronary 

spasm in pigs and humans.7–9

Perivascular Adipose Tissue
The coronary artery consists of the intima, media, adventitia and 

perivascular adipose tissue (PVAT; Figure 1). The adventitia completely 

surrounds the media and thus mediates communication with medial 

vascular smooth muscle cells.1,10 The adventitia also interacts with its 

adjacent PVAT, which is linked to microvessels and nerves, to regulate  

vascular physiology, homeostasis and structural remodelling, exerting  

major influences on the progression or regression of vascular disease.10

Ectopic adipose tissue, defined as the deposition of fat in non-classical 

locations including the heart and blood vessels, may contribute to the 

development of cardiovascular disease by exerting a local toxic effect 

on adjacent vasculature.11–13 

One such ectopic adipose tissue is PVAT, which is directly adhered to 

blood vessels. PVAT, similarly to other adipose tissues, is metabolically 

active, secreting a wide variety of bioactive substances.14 

Indeed, Owen et al. also reported that inflamed PVAT exerts augmented 

contractile effects through Rho-dependent signalling in pigs ex vivo.15

Thus, much attention has been focused on identifying the inflammation 

and metabolic activity of PVAT in experimental animals and humans.15–18 

Indeed, recent advances in translational research using non-invasive 

imaging modalities, including 18F-fluorodeoxyglucose (18F-FDG) PET and 

cardiac CT, have enabled us to visualise perivascular inflammation. 

In this brief review, we provide an overview of the recent progress in 

imaging for PVAT inflammation, particularly in the field of coronary 

artery spasm.
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Cardiac CT for Evaluation of Perivascular 
Adipose Tissue
Validation Studies
Although it has been considered to be technically difficult to directly 

detect PVAT or vascular inflammation on cardiac CT, inflammatory 

changes of PVAT have been emerging as a surrogate marker to detect 

the changes.16 Antonopoulos et al. reported that human vessels exert 

paracrine effects on the surrounding PVAT, affecting local intracellular 

lipid accumulation in preadipocytes, which can be monitored using a 

CT imaging approach.16 They examined human adipose tissue explants 

and their CT images from patients undergoing cardiac surgery, and 

developed a new imaging metric, termed as the CT fat attenuation 

index (FAI), that effectively describes adipocyte lipid content and size. 

The FAI has excellent sensitivity and specificity for detecting tissue 

inflammation, as assessed by tissue uptake of 18F-FDG PET. The FAI 

gradient around human coronary arteries effectively detected early 

subclinical coronary artery disease in vivo, as well as dynamic changes 

of PVAT. Indeed, we also demonstrated that adipocyte size significantly 

differed between the spastic site after drug-eluting stent (DES) 

implantation and the control site in our experimental study.19

Clinical Relevance
There is growing evidence suggesting that epicardial adipose tissue 

volume measured by cardiac CT is related to the extent of coronary 

plaque burden,20 and is also significantly associated with cardiovascular 

events.21 We recently demonstrated for the first time that coronary PVAT 

volume is increased at the spastic coronary segment of vasospastic 

angina (VSA) patients, suggesting the involvement of coronary PVAT in 

the pathogenesis of coronary spasm.22 Subsequently, Ito et al. reported 

that increased epicardial adipose tissue volume was associated with 

ergonovine-induced epicardial coronary artery spasm.23

However, our previous findings indicated that local adventitial 

inflammation including PVAT, but not systemic inflammation, plays 

important roles in the pathogenesis of coronary spasm.1,7,9 We thus 

suggested that increased PVAT volume of the spastic coronary 

segment could result in enhanced overall epicardial adipose tissue 

volume in the study by Ito et al.24 In addition, in our prospective 

clinical study, we confirmed that coronary PVAT volume was 

significantly increased at the spastic left anterior descending (LAD) 

coronary artery in VSA patients compared with non-VSA patients, 

although there were no significant differences in bodyweight, body 

mass index or percentage of body fat between the two groups 

(Figure 2).25 This finding indicates that coronary PVAT per se, but not 

bodyweight or other adipose tissue, plays an important role in the 

pathogenesis of VSA. Importantly, there was a significant positive 

correlation between the extent of the coronary PVAT volume index 

and that of coronary vasoconstricting responses to acetylcholine in 

VSA patients.23 Interestingly, the Cardiovascular Risk Prediction using 

Computed Tomography (CRIPT-CT) study recently showed that high 

perivascular FAI values are an indicator of increased cardiac mortality 

in patients with atherosclerosis by providing a quantitative measure 

of coronary inflammation.26

18F-fluorodeoxyglucose PET for Perivascular 
Adipose Tissue Inflammation
Validation Studies
18F-FDG PET has been clinically used to detect inflammation, as 

it reflects the metabolic activity of glucose, which is known to 

be enhanced in inflamed tissue.27 Indeed, 18F-FDG PET can non-

invasively image the metabolic activity in perivascular, visceral and 

subcutaneous fat tissues, serving as a surrogate marker for fat tissue 

inflammation.28,29 Indeed, Tarkia et al. demonstrated that, in early 

coronary atherosclerotic lesions, plaque inflammation with clearly 

increased uptake of 18F-FDG can be detected in a pig model of diabetes 

and hypercholesterolaemia.18

We also recently demonstrated that 18F-FDG PET/CT is useful for 

assessment of coronary PVAT inflammation in pigs in vivo in the 

pathogenesis of coronary spasm after DES implantation (Figure 3).19 

In that experimental study, an everolimus-eluting stent (EES) was 

randomly implanted in pigs into the LAD or the left circumflex coronary 

artery, while a non-stented coronary artery was used as a control. At 

1 month after EES implantation, coronary vasoconstricting responses 

to intracoronary serotonin were examined by coronary angiography in 

pigs in vivo, followed by in vivo and ex vivo 18F-FDG PET/CT imaging. 

Coronary vasoconstricting responses to serotonin were significantly 

enhanced at the EES edges compared with the control site. Notably, 

in vivo and ex vivo 18F-FDG PET/CT imaging and autoradiography 

showed enhanced 18F-FDG uptake and its accumulation in PVAT at the 

EES edges compared with the control site, respectively. Furthermore, 

histological and reverse transcription polymerase chain reaction 

The coronary artery consists of the intima, media, adventitia and perivascular adipose tissue. 
The adventitia also interacts with its adjacent perivascular adipose tissue, which is linked to 
microvessels and nerves. Perivascular adipose tissue is metabolically active, secreting a wide 
variety of bioactive substances to regulate vascular physiology, homeostasis and structural 
remodelling, exerting major influences on the progression or regression of vascular disease. 
Source: Ohyama et al. 2018.25 Reproduced with permission from Elsevier.

Figure 1: Coronary Adventitia and Perivascular Adipose 
Tissue in Patients With Vasospastic Angina
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Coronary angiograms after intracoronary acetylcholine (ACh) and isosorbide dinitrate (ISDN) 
are shown on the left. Cross-sectional CT images and 3D reconstructed CT images of coronary 
perivascular adipose tissue at the spastic left anterior descending coronary artery in a non-
vasospastic angina (VSA) patient (A, C) and a VSA patient (B, D) are on the right. Coronary 
perivascular adipose tissue volume of left anterior descending coronary artery was larger in a 
VSA patient compared with a non-VSA patient. CAG = coronary angiography; ISDN = isosorbide 
dinitrate. Source: Ohyama et al. 2018.25 Reproduced with permission from Elsevier.

Figure 2: Coronary Angiograms and CT Images of 
Coronary Perivascular Adipose Tissue Volume
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analysis showed that inflammatory changes of coronary PVAT were 

significantly enhanced at the EES edges compared with the control 

site. Importantly, Rho kinase expressions and Rho kinase activity 

at the EES edges were significantly enhanced compared with the 

control site in pigs. This basic research indicates that inflammatory 

changes of coronary PVAT are associated with DES-induced coronary 

hyperconstricting responses in pigs in vivo, and that 18F-FDG PET 

imaging is useful for assessment of coronary PVAT inflammation.

Clinical Relevance
Several studies demonstrated that 18F-FDG PET is clinically 

able to detect PVAT inflammation in patients with coronary 

atherosclerosis.16,22,23 Mazurek et al. reported that inflammatory 

activity of PVAT assessed by 18F-FDG PET was greater in patients with 

stable coronary artery disease than in non-coronary artery disease 

controls, and was independently associated with the extent of 

coronary stenosis.17 Hong et al. also reported that pericardial adipose 

tissue was significantly associated with vascular inflammation and 

various cardiometabolic risk profiles.30

Furthermore, based on our experimental validation study, we also 

recently demonstrated with ECG-gated 18F-FDG PET/CT that coronary 

artery spasm was associated with perivascular inflammation in 

patients with VSA (Figure 4).25 In that clinical study, after excluding 

patients with ≥75% organic stenosis in the LAD artery, we prospectively 

examined 27 consecutive VSA patients with acetylcholine-induced 

diffuse spasm in the LAD artery and 13 individuals with suspected 

angina, but without organic coronary lesions or coronary spasm. 

ECG-gated 18F-FDG PET/CT was performed to measure coronary 

perivascular FDG uptake. OCT was also performed to evaluate the 

VV of the LAD artery. 18F-FDG PET/CT images showed that coronary 

perivascular FDG uptake was significantly increased at the spastic 

LAD artery in the VSA group compared with the non-VSA group. OCT 

examination showed that adventitial VV area density per a cross-

sectional OCT image at the spastic LAD artery was markedly greater 

in the VSA group than in the non-VSA group. Importantly, after 23 

months’ follow up with medical treatment, coronary perivascular FDG 

uptake was significantly decreased in the VSA patients. Rho kinase 

activity in circulating leukocytes increased in the VSA patients, and 

substantially decreased after medical treatment. Thus, that clinical 

study demonstrated that coronary spasm is associated with coronary 

adventitial and PVAT inflammation, where 18F-FDG PET/CT may be 

useful for disease activity assessment.23

Although we and others previously demonstrated that atherosclerotic 

changes, such as focal VV formation, may be involved in the focal 

spasm compared with the diffuse spasm in VSA patients,31,32 further 

detailed mechanisms of the type and location of coronary spasm 

remain to be elucidated in future studies.

Future Perspectives
Other perivascular components, such as sympathetic nerve fibres 

(SNFs) and lymphatic vessels, begin to attract much attention as crucial 

players regarding perivascular inflammation. We recently demonstrated 

that after DES implantation in pigs in vivo, adventitial SNFs can be 

enhanced, and are associated with adventitial VV growth. Catheter-

based renal denervation also significantly upregulates the expression 

of alpha-2 adrenergic receptor-binding sites in the nucleus tractus 

solitarius, and attenuates adventitial VV enhancement associated with 

a decrease in SNF.33

We also recently demonstrated that cardiac lymphatic vessels (LVs) 

play important roles in the regulation of coronary vasomotion after DES 

implantation in pigs in vivo.34 In that study, after ligation of the proximal 
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18F-fluorodeoxyglucose (18F-FDG) PET/CT images of normal (A, B) and drug-eluting stent (DES)-
implanted coronary arteries at 1 month (E ,F). Magnified images of the control (C, D) and 
DES-implanted sites at 1 month (G, H). 18F-FDG uptake at the DES-implanted site is shown by 
yellow arrows (H). 18F-FDG PET/CT imaging showed that as compared with the control site 
(A–D), 18F-FDG uptake was markedly enhanced at the DES site (E–H) at 1 month after stent 
implantation. In the magnified images, 18F-FDG uptake extended from the DES implantation 
site to the proximal and distal edge segments (H). Source: Ohyama et al. 2017.19 Reproduced 
with permission from the American Heart Association.

Figure 3: Perivascular Adipose Tissue Inflammation 
Evaluated by PET/CT at the Spastic Coronary Segment 
After Drug-Eluting Stent Implantation in Pigs

18F-fluorodeoxyglucose (18F-FDG) PET/CT images of a non-vasospastic angina (VSA) patient (A, 
B) and a VSA patient (C, D). The yellow arrow shows coronary perivascular FDG uptake in the 
left anterior descending (LAD) artery (D). Coronary perivascular FDG uptake was markedly 
enhanced at the spastic LAD artery in the VSA group compared with the non-VSA group. 
Source: Ohyama et al. 2018.25 Reproduced with permission from Elsevier.

Figure 4: Coronary Perivascular Fluorodeoxyglucose 
Uptake Evaluated With PET/CT Imaging in a Vasospastic 
Angina Patient and a Non-vasospastic Angina Patient
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LV close to the left main coronary artery, coronary vasoconstricting 

responses at DES edges were significantly enhanced in the ligation 

group compared with the sham group. Importantly, LVs have drainage 

effects of inflammatory substances from PVAT, and thus may be one 

of the most crucial regulators for PVAT inflammation.35 Thus, the roles 

of these perivascular components (e.g. SNF and LV) also remain to be 

fully elucidated in future studies.

Antonopoulos et al. reported that interactions between the vascular 

wall and PVAT play an important role for adiponectin in the regulation 

of endothelial nitric oxide synthase function in patients with 

atherosclerosis.36,37 They introduced the novel concept that increased 

oxidative stress in the vessel wall leads to the release of peroxidation 

products (i.e. 4-hydroxynonenal) that upregulate adiponectin gene 

expression in PVAT via a peroxisome proliferator-activated receptor 

gamma-dependent mechanism, which also suggests the importance of 

inside-out signalling (i.e. from the vessel to surrounding PVAT). Further 

studies are required to elucidate the roles of inside-out signalling in 

cardiovascular disease in future studies. 

Conclusion
Recent advances in non-invasive imaging for PVAT inflammation have 

begun to elucidate the roles of PVAT in the pathogenesis of coronary 

artery spasm. These imaging approaches for coronary perivascular 

components will enable us to elucidate the important roles of the 

coronary adventitia and the pathogenesis of coronary artery disease. 
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