295 research outputs found

    A new genus to accommodate \u3cem\u3eGymnopus acervatus\u3c/em\u3e (Agaricales)

    Get PDF
    Phylogenies based on ITS and LSU nrDNA sequences show Agaricus (Gymnopus) acervatus as unique within the Gymnopus/Rhodocollybia complex. These phylogenies imply that a separate genus is necessary, and Connopus is proposed. Infraspecific morphological and DNA-based variation within C. acervatus suggests that a western North American clade might be reproductively isolated from the eastern North American/Scandinavian clade and that in this species complex the European and eastern North American clade might be conspecific. A Scandinavian exemplar is selected for bar-coding. Two GenBank sequences with name-phylogenetic placement inconsistencies are identified

    Cognitive performance and leukocyte telomere length in two narrow age-range cohorts: a population study

    No full text
    BACKGROUND Cognitive function and telomere length both decline with age. A correlation between these two measures would suggest that they may be influenced by the same underlying age-related biological process. Several studies suggest telomere length may be positively correlated with cognitive performance but the evidence is equivocal. In this report, the relationships between telomere length and cognitive performance at Wave 2 and cognitive change from Wave 1 to Wave 2 are assessed in two narrow age-range population cohorts. METHODS We tested the hypothesis that leukocyte telomere length correlates positively with cognitive performance and cognitive decline in two community cohorts of middle-aged (n = 351, 44-49 years) and older (n = 295, 64-70 years) adults, who participated in two waves of a longitudinal study undertaken in the Canberra-Queanbeyan region of Australia. Telomere length was estimated at Wave 2. Cognitive performance was measured using the Symbol Digit Modalities Test, the immediate recall test of the California Verbal Learning Test, reaction time (simple & choice) and the Trails Test Part B. RESULTS Cross-sectionally at Wave 2, telomere length correlated with Symbol Digit Modalities Test scores (men) and simple reaction time (women) for the older cohort only, although the latter finding was in the opposite direction to that hypothesised. Telomere length measured at Wave 2 was not associated with cognitive change from Wave 1 to Wave 2 for either cohort, except for two associations of small magnitude (immediate recall in the older cohort, choice reaction time in older women), which were also in the contrary direction to that predicted. CONCLUSIONS These results do not give strong support to the hypothesis that leukocyte telomere length is associated with either levels of cognitive performance or age-related cognitive change.This work was supported by an Australian National Health and Medical Research Council Program Grant 179805 and an R.M. Gibson Grant from the Australian Association of Gerontology. A.F. Jorm, K.J. Anstey and H. Christensen are funded by NHMRC Fellowships

    Compositional variability in mafic arc magmas over short spatial and temporal scales: evidence for the signature of mantle reactive melt channels

    Get PDF
    Understanding arc magma genesis is critical to deciphering the construction of continental crust, understanding the relationship between plutonic and volcanic rocks, and for assessing volcanic hazards. Arc magma genesis is complex. Interpreting the underlying causes of major and trace element diversity in erupted magmas is challenging and often non-unique. To navigate this complexity mafic magma diversity is investigated using sample suites that span short temporal and spatial scales. These constraints allow us to evaluate models of arc magma genesis and their geochemical implications based on physical arguments and recent model results. Young volcanic deposits (≲18 kyr) are analysed from the Southern Volcanic Zone (SVZ), Chile, in particular suites of scoria cones on the flanks of arc stratovolcanoes that have erupted relatively primitive magmas of diverse compositions. Our study is centred on the high-resolution post-glacial tephrochronological record for Mocho-Choshuenco volcano where tight age constraints and a high density of scoria cones provide a spatially well-resolved mafic magma dataset. Two compositional trends emerge from the data. Firstly, magmas from cones on the flanks of the main edifice become more mafic with distance from the central vent. This is attributed to fractional crystallisation processes within the crust, with distal cones sampling less differentiated magmas. Secondly, there is a set of cones with distinct major and trace element compositions that are more primitive but enriched in incompatible elements relative to the central system and other ‘normal SVZ’ magmas. This distinct signature – termed the ‘Kangechi’ signature – is observed at three further clusters of cones within the SVZ. This is attributed to greater preservation of the enriched melt signature arising from reactive melt transport within the mantle wedge. Our model has important implications for arc magma genesis in general, and in particular for the spatial and temporal scales over which compositional variations are preserved in erupted magmas

    Synchronisation of sedimentary records using tephra : a postglacial tephrochronological model for the Chilean Lake District

    Get PDF
    Well-characterised tephra horizons deposited in various sedimentary environments provide a means of synchronising sedimentary archives. The use of tephra as a chronological tool is however still widely underutilised in southern Chile and Argentina. In this study we develop a postglacial tephrochronological model for the Chilean Lake District (ca. 38 to 42 degrees S) by integrating terrestrial and lacustrine records. Tephra deposits preserved in lake sediments record discrete events even if they do not correspond to primary fallout. By combining terrestrial with lacustrine records we obtain the most complete tephrostratigraphic record for the area to date. We present glass geochemical and chronological data for key marker horizons that may be used to synchronise sedimentary archives used for palaeoenvironmental, palaeoclimatological and palaeoseismological purposes. Most volcanoes in the studied segment of the Southern Volcanic Zone, between Llaima and Calbuco, have produced at least one regional marker deposit resulting from a large explosive eruption (magnitude >= 4), some of which now have a significantly improved age estimate (e.g., the 10.5 ka Llaima Pumice eruption from Llaima volcano). Others, including several units from Puyehue-Cordon Caulle, are newly described here. We also find tephra related to the Cha1 eruption from Chaiten volcano in lake sediments up to 400 km north from source. Several clear marker horizons are now identified that should help refine age model reconstructions for various sedimentary archives. Our chronological model suggests three distinct phases of eruptive activity impacting the area, with an early-to-mid-Holocene period of relative quiescence. Extending our tephrochronological framework further south into Patagonia will allow a more detailed evaluation of the controls on the occurrence and magnitude of explosive eruptions throughout the postglacial

    Mixing and crystal scavenging in the Main Ethiopian Rift revealed by trace element systematics in feldspars and glasses

    Get PDF
    For many magmatic systems, crystal compositions preserve a complex and protracted history which may be largely decoupled from their carrier melts. The crystal cargo may hold clues to the physical distribution of melt and crystals in a magma reservoir and how magmas are assembled prior to eruptions. Here we present a geochemical study of a suite of samples from three peralkaline volcanoes in the Main Ethiopian Rift. Whilst whole-rock data shows strong fractional crystallisation signatures, the trace element systematics of feldspars, and their relationship to their host glasses, reveals complexity. Alkali feldspars, particularly those erupted during caldera forming episodes, have variable Ba concentrations, extending to high values that are not in equilibrium with the carrier liquids. Some of the feldspars are antecrysts, which we suggest are scavenged from a crystal-rich mush. The antecrysts crystallised from a Ba-enriched (more primitive) melt, before later entrainment into a Ba-depleted residual liquid. Crystal-melt segregation can occur on fast timescales in these magma reservoirs, owing to the low viscosity nature of peralkaline liquids. The separation of enough residual melt to feed a crystal-poor post caldera rhyolitic eruption may take as little as months to tens of years (much shorter than typical repose periods of 300-400 years). Our observations are consistent with these magmatic systems spending significant portions of their life cycle dominated by crystalline mushes containing ephemeral, small (< 1 km3) segregations of melt. This interpretation helps to reconcile observations of high crustal electrical resistivity beneath Aluto, despite seismicity and ground deformation consistent with a magma body.This project is funded by the Natural Environment Research Council grant NE/L013932/1 (RiftVolc)

    Contrasting styles of post-caldera volcanism along the Main Ethiopian Rift : implications for contemporary volcanic hazards

    Get PDF
    This work was funded by the Natural Environment Research Council grant NE/L013932/1 (RiftVolc) and a Boise Fund grant from the Department of Zoology, University of Oxford.The Main Ethiopian Rift (MER, ~7–9°N) is the type example of a magma-assisted continental rift. The rift axis is populated with regularly spaced silicic caldera complexes and central stratovolcanoes, interspersed with large fields of small mafic scoria cones. The recent (latest Pleistocene to Holocene) history of volcanism in the MER is poorly known, and no eruptions have occurred in the living memory of the local population. Assessment of contemporary volcanic hazards and associated risk is primarily based on the study of the most recent eruptive products, typically those emplaced within the last 10–20 ky. We integrate new and published field observations and geochemical data on tephra deposits from the main Late Quaternary volcanic centres in the central MER to assess contemporary volcanic hazards. Most central volcanoes in the MER host large mid-Pleistocene calderas, with typical diameters of 5–15 km, and associated ignimbrites of trachyte and peralkaline rhyolite composition. In contrast, post-caldera activity at most centres comprises eruptions of peralkaline rhyolitic magmas as obsidian flows, domes and pumice cones. The frequency and magnitude of events varies between individual volcanoes. Some volcanoes have predominantly erupted obsidian lava flows in their most recent post-caldera stage (Fentale), whereas other have had up to 3 moderate-scale (VEI 3–4) explosive eruptions per millennium (Aluto). At some volcanoes we find evidence for multiple large explosive eruptions (Corbetti, Bora-Baricha, Boset-Bericha) which have deposited several centimeters to meters of pumice and ash in currently densely populated regions. This new overview has important implications when assessing the present-day volcanic hazard in this rapidly developing region.PostprintPeer reviewe

    Mixing and crystal scavenging in the Main Ethiopian Rift revealed by trace element systematics in feldspars and glasses

    Get PDF
    For many magmatic systems, crystal compositions preserve a complex and protracted history which may be largely decoupled from their carrier melts. The crystal cargo may hold clues to the physical distribution of melt and crystals in a magma reservoir and how magmas are assembled prior to eruptions. Here we present a geochemical study of a suite of samples from three peralkaline volcanoes in the Main Ethiopian Rift. Whilst whole‐rock data shows strong fractional crystallisation signatures, the trace element systematics of feldspars, and their relationship to their host glasses, reveals complexity. Alkali feldspars, particularly those erupted during caldera‐forming episodes, have variable Ba concentrations, extending to high values that are not in equilibrium with the carrier liquids. Some of the feldspars are antecrysts, which we suggest are scavenged from a crystal‐rich mush. The antecrysts crystallised from a Ba‐enriched (more primitive) melt, before later entrainment into a Ba‐depleted residual liquid. Crystal‐melt segregation can occur on fast timescales in these magma reservoirs, owing to the low viscosity nature of peralkaline liquids. The separation of enough residual melt to feed a crystal‐poor post‐caldera rhyolitic eruption may take as little as months to tens of years (much shorter than typical repose periods of 300‐400 years). Our observations are consistent with these magmatic systems spending significant portions of their life cycle dominated by crystalline mushes containing ephemeral, small (< 1 km3) segregations of melt. This interpretation helps to reconcile observations of high crustal electrical resistivity beneath Aluto, despite seismicity and ground deformation consistent with a magma body

    Long-Term Memory for the Terrorist Attack of September 11: Flashbulb Memories, Event Memories, and the Factors That Influence Their Retention

    Get PDF
    More than 3,000 individuals from 7 U.S. cities reported on their memories of learning of the terrorist attacks of September 11, as well as details about the attack, 1 week, 11 months, and/or 35 months after the assault. Some studies of flashbulb memories examining long-term retention show slowing in the rate of forgetting after a year, whereas others demonstrate accelerated forgetting. This article indicates that (a) the rate of forgetting for flashbulb memories and event memory (memory for details about the event itself) slows after a year, (b) the strong emotional reactions elicited by flashbulb events are remembered poorly, worse than nonemotional features such as where and from whom one learned of the attack, and (c) the content of flashbulb and event memories stabilizes after a year. The results are discussed in terms of community memory practices.James S. McDonnell FoundationNational Institutes of Health (U.S.) (grant R01- MH0066972

    The efficacy of playing a virtual reality game in modulating pain for children with acute burn injuries: A randomized controlled trial [ISRCTN87413556]

    Get PDF
    BACKGROUND: The management of burn injuries is reported as painful, distressing and a cause of anxiety in children and their parents. Child's and parents' pain and anxiety, often contributes to extended time required for burns management procedures, in particular the process of changing dressings. The traditional method of pharmacologic analgesia is often insufficient to cover the burnt child's pain, and it can have deleterious side effects [1,2]. Intervention with Virtual Reality (VR) games is based on distraction or interruption in the way current thoughts, including pain, are processed by the brain. Research on adults supports the hypothesis that virtual reality has a positive influence on burns pain modulation. METHODS: This study investigates whether playing a virtual reality game, decreases procedural pain in children aged 5–18 years with acute burn injuries. The paper reports on the findings of a pilot study, a randomised trial, in which seven children acted as their own controls though a series of 11 trials. Outcomes were pain measured using the self-report Faces Scale and findings of interviews with parent/carer and nurses. RESULTS: The average pain scores (from the Faces Scale) for pharmacological analgesia only was, 4.1 (SD 2.9), while VR coupled with pharmacological analgesia, the average pain score was 1.3 (SD 1.8) CONCLUSION: The study provides strong evidence supporting VR based games in providing analgesia with minimal side effects and little impact on the physical hospital environment, as well as its reusability and versatility, suggesting another option in the management of children's acute pain
    corecore